|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- *> \brief \b ZLARGE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLARGE( N, A, LDA, ISEED, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLARGE pre- and post-multiplies a complex general n by n matrix A
- *> with a random unitary matrix: A = U*D*U'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the original n by n matrix A.
- *> On exit, A is overwritten by U*A*U' for some random
- *> unitary matrix U.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= N.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry, the seed of the random number generator; the array
- *> elements must be between 0 and 4095, and ISEED(4) must be
- *> odd.
- *> On exit, the seed is updated.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_matgen
- *
- * =====================================================================
- SUBROUTINE ZLARGE( N, A, LDA, ISEED, WORK, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I
- DOUBLE PRECISION WN
- COMPLEX*16 TAU, WA, WB
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEMV, ZGERC, ZLARNV, ZSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DZNRM2
- EXTERNAL DZNRM2
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -3
- END IF
- IF( INFO.LT.0 ) THEN
- CALL XERBLA( 'ZLARGE', -INFO )
- RETURN
- END IF
- *
- * pre- and post-multiply A by random unitary matrix
- *
- DO 10 I = N, 1, -1
- *
- * generate random reflection
- *
- CALL ZLARNV( 3, ISEED, N-I+1, WORK )
- WN = DZNRM2( N-I+1, WORK, 1 )
- WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = WORK( 1 ) + WA
- CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
- WORK( 1 ) = ONE
- TAU = DBLE( WB / WA )
- END IF
- *
- * multiply A(i:n,1:n) by random reflection from the left
- *
- CALL ZGEMV( 'Conjugate transpose', N-I+1, N, ONE, A( I, 1 ),
- $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
- CALL ZGERC( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
- $ LDA )
- *
- * multiply A(1:n,i:n) by random reflection from the right
- *
- CALL ZGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
- $ WORK, 1, ZERO, WORK( N+1 ), 1 )
- CALL ZGERC( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
- $ LDA )
- 10 CONTINUE
- RETURN
- *
- * End of ZLARGE
- *
- END
|