|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031 |
- *> \brief \b DDRVGG
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DDRVGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * THRSHN, NOUNIT, A, LDA, B, S, T, S2, T2, Q,
- * LDQ, Z, ALPHR1, ALPHI1, BETA1, ALPHR2, ALPHI2,
- * BETA2, VL, VR, WORK, LWORK, RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
- * DOUBLE PRECISION THRESH, THRSHN
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), NN( * )
- * DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI2( * ),
- * $ ALPHR1( * ), ALPHR2( * ), B( LDA, * ),
- * $ BETA1( * ), BETA2( * ), Q( LDQ, * ),
- * $ RESULT( * ), S( LDA, * ), S2( LDA, * ),
- * $ T( LDA, * ), T2( LDA, * ), VL( LDQ, * ),
- * $ VR( LDQ, * ), WORK( * ), Z( LDQ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DDRVGG checks the nonsymmetric generalized eigenvalue driver
- *> routines.
- *> T T T
- *> DGEGS factors A and B as Q S Z and Q T Z , where means
- *> transpose, T is upper triangular, S is in generalized Schur form
- *> (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,
- *> the 2x2 blocks corresponding to complex conjugate pairs of
- *> generalized eigenvalues), and Q and Z are orthogonal. It also
- *> computes the generalized eigenvalues (alpha(1),beta(1)), ...,
- *> (alpha(n),beta(n)), where alpha(j)=S(j,j) and beta(j)=P(j,j) --
- *> thus, w(j) = alpha(j)/beta(j) is a root of the generalized
- *> eigenvalue problem
- *>
- *> det( A - w(j) B ) = 0
- *>
- *> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
- *> problem
- *>
- *> det( m(j) A - B ) = 0
- *>
- *> DGEGV computes the generalized eigenvalues (alpha(1),beta(1)), ...,
- *> (alpha(n),beta(n)), the matrix L whose columns contain the
- *> generalized left eigenvectors l, and the matrix R whose columns
- *> contain the generalized right eigenvectors r for the pair (A,B).
- *>
- *> When DDRVGG is called, a number of matrix "sizes" ("n's") and a
- *> number of matrix "types" are specified. For each size ("n")
- *> and each type of matrix, one matrix will be generated and used
- *> to test the nonsymmetric eigenroutines. For each matrix, 7
- *> tests will be performed and compared with the threshhold THRESH:
- *>
- *> Results from DGEGS:
- *>
- *> T
- *> (1) | A - Q S Z | / ( |A| n ulp )
- *>
- *> T
- *> (2) | B - Q T Z | / ( |B| n ulp )
- *>
- *> T
- *> (3) | I - QQ | / ( n ulp )
- *>
- *> T
- *> (4) | I - ZZ | / ( n ulp )
- *>
- *> (5) maximum over j of D(j) where:
- *>
- *> if alpha(j) is real:
- *> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
- *> D(j) = ------------------------ + -----------------------
- *> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
- *>
- *> if alpha(j) is complex:
- *> | det( s S - w T ) |
- *> D(j) = ---------------------------------------------------
- *> ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
- *>
- *> and S and T are here the 2 x 2 diagonal blocks of S and T
- *> corresponding to the j-th eigenvalue.
- *>
- *> Results from DGEGV:
- *>
- *> (6) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
- *>
- *> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
- *>
- *> where l**H is the conjugate tranpose of l.
- *>
- *> (7) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
- *>
- *> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
- *>
- *> Test Matrices
- *> ---- --------
- *>
- *> The sizes of the test matrices are specified by an array
- *> NN(1:NSIZES); the value of each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
- *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) ( 0, 0 ) (a pair of zero matrices)
- *>
- *> (2) ( I, 0 ) (an identity and a zero matrix)
- *>
- *> (3) ( 0, I ) (an identity and a zero matrix)
- *>
- *> (4) ( I, I ) (a pair of identity matrices)
- *>
- *> t t
- *> (5) ( J , J ) (a pair of transposed Jordan blocks)
- *>
- *> t ( I 0 )
- *> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
- *> ( 0 I ) ( 0 J )
- *> and I is a k x k identity and J a (k+1)x(k+1)
- *> Jordan block; k=(N-1)/2
- *>
- *> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
- *> matrix with those diagonal entries.)
- *> (8) ( I, D )
- *>
- *> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
- *>
- *> (10) ( small*D, big*I )
- *>
- *> (11) ( big*I, small*D )
- *>
- *> (12) ( small*I, big*D )
- *>
- *> (13) ( big*D, big*I )
- *>
- *> (14) ( small*D, small*I )
- *>
- *> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
- *> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
- *> t t
- *> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
- *>
- *> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
- *> with random O(1) entries above the diagonal
- *> and diagonal entries diag(T1) =
- *> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
- *> ( 0, N-3, N-4,..., 1, 0, 0 )
- *>
- *> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
- *> s = machine precision.
- *>
- *> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
- *>
- *> N-5
- *> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *>
- *> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *> where r1,..., r(N-4) are random.
- *>
- *> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
- *> matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> DDRVGG does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. The values must be at least
- *> zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, DDRVGG
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to DDRVGG to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error is
- *> scaled to be O(1), so THRESH should be a reasonably small
- *> multiple of 1, e.g., 10 or 100. In particular, it should
- *> not depend on the precision (single vs. double) or the size
- *> of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] THRSHN
- *> \verbatim
- *> THRSHN is DOUBLE PRECISION
- *> Threshhold for reporting eigenvector normalization error.
- *> If the normalization of any eigenvector differs from 1 by
- *> more than THRSHN*ulp, then a special error message will be
- *> printed. (This is handled separately from the other tests,
- *> since only a compiler or programming error should cause an
- *> error message, at least if THRSHN is at least 5--10.)
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA, max(NN))
- *> Used to hold the original A matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A, B, S, T, S2, and T2.
- *> It must be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension
- *> (LDA, max(NN))
- *> Used to hold the original B matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The Schur form matrix computed from A by DGEGS. On exit, S
- *> contains the Schur form matrix corresponding to the matrix
- *> in A.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The upper triangular matrix computed from B by DGEGS.
- *> \endverbatim
- *>
- *> \param[out] S2
- *> \verbatim
- *> S2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The matrix computed from A by DGEGV. This will be the
- *> Schur form of some matrix related to A, but will not, in
- *> general, be the same as S.
- *> \endverbatim
- *>
- *> \param[out] T2
- *> \verbatim
- *> T2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The matrix computed from B by DGEGV. This will be the
- *> Schur form of some matrix related to B, but will not, in
- *> general, be the same as T.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ, max(NN))
- *> The (left) orthogonal matrix computed by DGEGS.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of Q, Z, VL, and VR. It must
- *> be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array of
- *> dimension( LDQ, max(NN) )
- *> The (right) orthogonal matrix computed by DGEGS.
- *> \endverbatim
- *>
- *> \param[out] ALPHR1
- *> \verbatim
- *> ALPHR1 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] ALPHI1
- *> \verbatim
- *> ALPHI1 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] BETA1
- *> \verbatim
- *> BETA1 is DOUBLE PRECISION array, dimension (max(NN))
- *>
- *> The generalized eigenvalues of (A,B) computed by DGEGS.
- *> ( ALPHR1(k)+ALPHI1(k)*i ) / BETA1(k) is the k-th
- *> generalized eigenvalue of the matrices in A and B.
- *> \endverbatim
- *>
- *> \param[out] ALPHR2
- *> \verbatim
- *> ALPHR2 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] ALPHI2
- *> \verbatim
- *> ALPHI2 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] BETA2
- *> \verbatim
- *> BETA2 is DOUBLE PRECISION array, dimension (max(NN))
- *>
- *> The generalized eigenvalues of (A,B) computed by DGEGV.
- *> ( ALPHR2(k)+ALPHI2(k)*i ) / BETA2(k) is the k-th
- *> generalized eigenvalue of the matrices in A and B.
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION array, dimension (LDQ, max(NN))
- *> The (block lower triangular) left eigenvector matrix for
- *> the matrices in A and B. (See DTGEVC for the format.)
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is DOUBLE PRECISION array, dimension (LDQ, max(NN))
- *> The (block upper triangular) right eigenvector matrix for
- *> the matrices in A and B. (See DTGEVC for the format.)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> 2*N + MAX( 6*N, N*(NB+1), (k+1)*(2*k+N+1) ), where
- *> "k" is the sum of the blocksize and number-of-shifts for
- *> DHGEQZ, and NB is the greatest of the blocksizes for
- *> DGEQRF, DORMQR, and DORGQR. (The blocksizes and the
- *> number-of-shifts are retrieved through calls to ILAENV.)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (15)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: A routine returned an error code. INFO is the
- *> absolute value of the INFO value returned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DDRVGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ THRSHN, NOUNIT, A, LDA, B, S, T, S2, T2, Q,
- $ LDQ, Z, ALPHR1, ALPHI1, BETA1, ALPHR2, ALPHI2,
- $ BETA2, VL, VR, WORK, LWORK, RESULT, INFO )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
- DOUBLE PRECISION THRESH, THRSHN
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), NN( * )
- DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI2( * ),
- $ ALPHR1( * ), ALPHR2( * ), B( LDA, * ),
- $ BETA1( * ), BETA2( * ), Q( LDQ, * ),
- $ RESULT( * ), S( LDA, * ), S2( LDA, * ),
- $ T( LDA, * ), T2( LDA, * ), VL( LDQ, * ),
- $ VR( LDQ, * ), WORK( * ), Z( LDQ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 26 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN, ILABAD
- INTEGER I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
- $ LWKOPT, MTYPES, N, N1, NB, NBZ, NERRS, NMATS,
- $ NMAX, NS, NTEST, NTESTT
- DOUBLE PRECISION SAFMAX, SAFMIN, TEMP1, TEMP2, ULP, ULPINV
- * ..
- * .. Local Arrays ..
- INTEGER IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
- $ IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
- $ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
- $ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
- $ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
- $ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
- DOUBLE PRECISION DUMMA( 4 ), RMAGN( 0: 3 )
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLARND
- EXTERNAL ILAENV, DLAMCH, DLARND
- * ..
- * .. External Subroutines ..
- EXTERNAL ALASVM, DGEGS, DGEGV, DGET51, DGET52, DGET53,
- $ DLABAD, DLACPY, DLARFG, DLASET, DLATM4, DORM2R,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN, SIGN
- * ..
- * .. Data statements ..
- DATA KCLASS / 15*1, 10*2, 1*3 /
- DATA KZ1 / 0, 1, 2, 1, 3, 3 /
- DATA KZ2 / 0, 0, 1, 2, 1, 1 /
- DATA KADD / 0, 0, 0, 0, 3, 2 /
- DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
- $ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
- DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
- $ 1, 1, -4, 2, -4, 8*8, 0 /
- DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
- $ 4*5, 4*3, 1 /
- DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
- $ 4*6, 4*4, 1 /
- DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
- $ 2, 1 /
- DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
- $ 2, 1 /
- DATA KTRIAN / 16*0, 10*1 /
- DATA IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
- $ 5*2, 0 /
- DATA IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- INFO = 0
- *
- BADNN = .FALSE.
- NMAX = 1
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- * Maximum blocksize and shift -- we assume that blocksize and number
- * of shifts are monotone increasing functions of N.
- *
- NB = MAX( 1, ILAENV( 1, 'DGEQRF', ' ', NMAX, NMAX, -1, -1 ),
- $ ILAENV( 1, 'DORMQR', 'LT', NMAX, NMAX, NMAX, -1 ),
- $ ILAENV( 1, 'DORGQR', ' ', NMAX, NMAX, NMAX, -1 ) )
- NBZ = ILAENV( 1, 'DHGEQZ', 'SII', NMAX, 1, NMAX, 0 )
- NS = ILAENV( 4, 'DHGEQZ', 'SII', NMAX, 1, NMAX, 0 )
- I1 = NBZ + NS
- LWKOPT = 2*NMAX + MAX( 6*NMAX, NMAX*( NB+1 ),
- $ ( 2*I1+NMAX+1 )*( I1+1 ) )
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -3
- ELSE IF( THRESH.LT.ZERO ) THEN
- INFO = -6
- ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
- INFO = -10
- ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
- INFO = -19
- ELSE IF( LWKOPT.GT.LWORK ) THEN
- INFO = -30
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DDRVGG', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- SAFMIN = SAFMIN / ULP
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULPINV = ONE / ULP
- *
- * The values RMAGN(2:3) depend on N, see below.
- *
- RMAGN( 0 ) = ZERO
- RMAGN( 1 ) = ONE
- *
- * Loop over sizes, types
- *
- NTESTT = 0
- NERRS = 0
- NMATS = 0
- *
- DO 170 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- N1 = MAX( 1, N )
- RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
- RMAGN( 3 ) = SAFMIN*ULPINV*N1
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 160 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 160
- NMATS = NMATS + 1
- NTEST = 0
- *
- * Save ISEED in case of an error.
- *
- DO 20 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 20 CONTINUE
- *
- * Initialize RESULT
- *
- DO 30 J = 1, 15
- RESULT( J ) = ZERO
- 30 CONTINUE
- *
- * Compute A and B
- *
- * Description of control parameters:
- *
- * KZLASS: =1 means w/o rotation, =2 means w/ rotation,
- * =3 means random.
- * KATYPE: the "type" to be passed to DLATM4 for computing A.
- * KAZERO: the pattern of zeros on the diagonal for A:
- * =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
- * =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
- * =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
- * non-zero entries.)
- * KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
- * =2: large, =3: small.
- * IASIGN: 1 if the diagonal elements of A are to be
- * multiplied by a random magnitude 1 number, =2 if
- * randomly chosen diagonal blocks are to be rotated
- * to form 2x2 blocks.
- * KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
- * KTRIAN: =0: don't fill in the upper triangle, =1: do.
- * KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
- * RMAGN: used to implement KAMAGN and KBMAGN.
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 110
- IINFO = 0
- IF( KCLASS( JTYPE ).LT.3 ) THEN
- *
- * Generate A (w/o rotation)
- *
- IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
- ELSE
- IN = N
- END IF
- CALL DLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
- $ KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
- $ RMAGN( KAMAGN( JTYPE ) ), ULP,
- $ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
- $ ISEED, A, LDA )
- IADD = KADD( KAZERO( JTYPE ) )
- IF( IADD.GT.0 .AND. IADD.LE.N )
- $ A( IADD, IADD ) = ONE
- *
- * Generate B (w/o rotation)
- *
- IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
- ELSE
- IN = N
- END IF
- CALL DLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
- $ KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
- $ RMAGN( KBMAGN( JTYPE ) ), ONE,
- $ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
- $ ISEED, B, LDA )
- IADD = KADD( KBZERO( JTYPE ) )
- IF( IADD.NE.0 .AND. IADD.LE.N )
- $ B( IADD, IADD ) = ONE
- *
- IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
- *
- * Include rotations
- *
- * Generate Q, Z as Householder transformations times
- * a diagonal matrix.
- *
- DO 50 JC = 1, N - 1
- DO 40 JR = JC, N
- Q( JR, JC ) = DLARND( 3, ISEED )
- Z( JR, JC ) = DLARND( 3, ISEED )
- 40 CONTINUE
- CALL DLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
- $ WORK( JC ) )
- WORK( 2*N+JC ) = SIGN( ONE, Q( JC, JC ) )
- Q( JC, JC ) = ONE
- CALL DLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
- $ WORK( N+JC ) )
- WORK( 3*N+JC ) = SIGN( ONE, Z( JC, JC ) )
- Z( JC, JC ) = ONE
- 50 CONTINUE
- Q( N, N ) = ONE
- WORK( N ) = ZERO
- WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
- Z( N, N ) = ONE
- WORK( 2*N ) = ZERO
- WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
- *
- * Apply the diagonal matrices
- *
- DO 70 JC = 1, N
- DO 60 JR = 1, N
- A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
- $ A( JR, JC )
- B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
- $ B( JR, JC )
- 60 CONTINUE
- 70 CONTINUE
- CALL DORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
- $ A, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
- $ B, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- END IF
- ELSE
- *
- * Random matrices
- *
- DO 90 JC = 1, N
- DO 80 JR = 1, N
- A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
- $ DLARND( 2, ISEED )
- B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
- $ DLARND( 2, ISEED )
- 80 CONTINUE
- 90 CONTINUE
- END IF
- *
- 100 CONTINUE
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 110 CONTINUE
- *
- * Call DGEGS to compute H, T, Q, Z, alpha, and beta.
- *
- CALL DLACPY( ' ', N, N, A, LDA, S, LDA )
- CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
- NTEST = 1
- RESULT( 1 ) = ULPINV
- *
- CALL DGEGS( 'V', 'V', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
- $ BETA1, Q, LDQ, Z, LDQ, WORK, LWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DGEGS', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 140
- END IF
- *
- NTEST = 4
- *
- * Do tests 1--4
- *
- CALL DGET51( 1, N, A, LDA, S, LDA, Q, LDQ, Z, LDQ, WORK,
- $ RESULT( 1 ) )
- CALL DGET51( 1, N, B, LDA, T, LDA, Q, LDQ, Z, LDQ, WORK,
- $ RESULT( 2 ) )
- CALL DGET51( 3, N, B, LDA, T, LDA, Q, LDQ, Q, LDQ, WORK,
- $ RESULT( 3 ) )
- CALL DGET51( 3, N, B, LDA, T, LDA, Z, LDQ, Z, LDQ, WORK,
- $ RESULT( 4 ) )
- *
- * Do test 5: compare eigenvalues with diagonals.
- * Also check Schur form of A.
- *
- TEMP1 = ZERO
- *
- DO 120 J = 1, N
- ILABAD = .FALSE.
- IF( ALPHI1( J ).EQ.ZERO ) THEN
- TEMP2 = ( ABS( ALPHR1( J )-S( J, J ) ) /
- $ MAX( SAFMIN, ABS( ALPHR1( J ) ), ABS( S( J,
- $ J ) ) )+ABS( BETA1( J )-T( J, J ) ) /
- $ MAX( SAFMIN, ABS( BETA1( J ) ), ABS( T( J,
- $ J ) ) ) ) / ULP
- IF( J.LT.N ) THEN
- IF( S( J+1, J ).NE.ZERO )
- $ ILABAD = .TRUE.
- END IF
- IF( J.GT.1 ) THEN
- IF( S( J, J-1 ).NE.ZERO )
- $ ILABAD = .TRUE.
- END IF
- ELSE
- IF( ALPHI1( J ).GT.ZERO ) THEN
- I1 = J
- ELSE
- I1 = J - 1
- END IF
- IF( I1.LE.0 .OR. I1.GE.N ) THEN
- ILABAD = .TRUE.
- ELSE IF( I1.LT.N-1 ) THEN
- IF( S( I1+2, I1+1 ).NE.ZERO )
- $ ILABAD = .TRUE.
- ELSE IF( I1.GT.1 ) THEN
- IF( S( I1, I1-1 ).NE.ZERO )
- $ ILABAD = .TRUE.
- END IF
- IF( .NOT.ILABAD ) THEN
- CALL DGET53( S( I1, I1 ), LDA, T( I1, I1 ), LDA,
- $ BETA1( J ), ALPHR1( J ), ALPHI1( J ),
- $ TEMP2, IINFO )
- IF( IINFO.GE.3 ) THEN
- WRITE( NOUNIT, FMT = 9997 )IINFO, J, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- END IF
- ELSE
- TEMP2 = ULPINV
- END IF
- END IF
- TEMP1 = MAX( TEMP1, TEMP2 )
- IF( ILABAD ) THEN
- WRITE( NOUNIT, FMT = 9996 )J, N, JTYPE, IOLDSD
- END IF
- 120 CONTINUE
- RESULT( 5 ) = TEMP1
- *
- * Call DGEGV to compute S2, T2, VL, and VR, do tests.
- *
- * Eigenvalues and Eigenvectors
- *
- CALL DLACPY( ' ', N, N, A, LDA, S2, LDA )
- CALL DLACPY( ' ', N, N, B, LDA, T2, LDA )
- NTEST = 6
- RESULT( 6 ) = ULPINV
- *
- CALL DGEGV( 'V', 'V', N, S2, LDA, T2, LDA, ALPHR2, ALPHI2,
- $ BETA2, VL, LDQ, VR, LDQ, WORK, LWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DGEGV', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 140
- END IF
- *
- NTEST = 7
- *
- * Do Tests 6 and 7
- *
- CALL DGET52( .TRUE., N, A, LDA, B, LDA, VL, LDQ, ALPHR2,
- $ ALPHI2, BETA2, WORK, DUMMA( 1 ) )
- RESULT( 6 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRSHN ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Left', 'DGEGV', DUMMA( 2 ),
- $ N, JTYPE, IOLDSD
- END IF
- *
- CALL DGET52( .FALSE., N, A, LDA, B, LDA, VR, LDQ, ALPHR2,
- $ ALPHI2, BETA2, WORK, DUMMA( 1 ) )
- RESULT( 7 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRESH ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Right', 'DGEGV', DUMMA( 2 ),
- $ N, JTYPE, IOLDSD
- END IF
- *
- * Check form of Complex eigenvalues.
- *
- DO 130 J = 1, N
- ILABAD = .FALSE.
- IF( ALPHI2( J ).GT.ZERO ) THEN
- IF( J.EQ.N ) THEN
- ILABAD = .TRUE.
- ELSE IF( ALPHI2( J+1 ).GE.ZERO ) THEN
- ILABAD = .TRUE.
- END IF
- ELSE IF( ALPHI2( J ).LT.ZERO ) THEN
- IF( J.EQ.1 ) THEN
- ILABAD = .TRUE.
- ELSE IF( ALPHI2( J-1 ).LE.ZERO ) THEN
- ILABAD = .TRUE.
- END IF
- END IF
- IF( ILABAD ) THEN
- WRITE( NOUNIT, FMT = 9996 )J, N, JTYPE, IOLDSD
- END IF
- 130 CONTINUE
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- 140 CONTINUE
- *
- NTESTT = NTESTT + NTEST
- *
- * Print out tests which fail.
- *
- DO 150 JR = 1, NTEST
- IF( RESULT( JR ).GE.THRESH ) THEN
- *
- * If this is the first test to fail,
- * print a header to the data file.
- *
- IF( NERRS.EQ.0 ) THEN
- WRITE( NOUNIT, FMT = 9995 )'DGG'
- *
- * Matrix types
- *
- WRITE( NOUNIT, FMT = 9994 )
- WRITE( NOUNIT, FMT = 9993 )
- WRITE( NOUNIT, FMT = 9992 )'Orthogonal'
- *
- * Tests performed
- *
- WRITE( NOUNIT, FMT = 9991 )'orthogonal', '''',
- $ 'transpose', ( '''', J = 1, 5 )
- *
- END IF
- NERRS = NERRS + 1
- IF( RESULT( JR ).LT.10000.0D0 ) THEN
- WRITE( NOUNIT, FMT = 9990 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- ELSE
- WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- END IF
- END IF
- 150 CONTINUE
- *
- 160 CONTINUE
- 170 CONTINUE
- *
- * Summary
- *
- CALL ALASVM( 'DGG', NOUNIT, NERRS, NTESTT, 0 )
- RETURN
- *
- 9999 FORMAT( ' DDRVGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
- *
- 9998 FORMAT( ' DDRVGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
- $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
- $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
- $ ')' )
- *
- 9997 FORMAT( ' DDRVGG: DGET53 returned INFO=', I1, ' for eigenvalue ',
- $ I6, '.', / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(',
- $ 3( I5, ',' ), I5, ')' )
- *
- 9996 FORMAT( ' DDRVGG: S not in Schur form at eigenvalue ', I6, '.',
- $ / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
- $ I5, ')' )
- *
- 9995 FORMAT( / 1X, A3, ' -- Real Generalized eigenvalue problem driver'
- $ )
- *
- 9994 FORMAT( ' Matrix types (see DDRVGG for details): ' )
- *
- 9993 FORMAT( ' Special Matrices:', 23X,
- $ '(J''=transposed Jordan block)',
- $ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
- $ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
- $ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
- $ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
- $ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
- $ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
- 9992 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
- $ / ' 16=Transposed Jordan Blocks 19=geometric ',
- $ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
- $ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
- $ 'alpha, beta=0,1 21=random alpha, beta=0,1',
- $ / ' Large & Small Matrices:', / ' 22=(large, small) ',
- $ '23=(small,large) 24=(small,small) 25=(large,large)',
- $ / ' 26=random O(1) matrices.' )
- *
- 9991 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
- $ 'Q and Z are ', A, ',', / 20X,
- $ 'l and r are the appropriate left and right', / 19X,
- $ 'eigenvectors, resp., a is alpha, b is beta, and', / 19X, A,
- $ ' means ', A, '.)', / ' 1 = | A - Q S Z', A,
- $ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
- $ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
- $ ' | / ( n ulp ) 4 = | I - ZZ', A,
- $ ' | / ( n ulp )', /
- $ ' 5 = difference between (alpha,beta) and diagonals of',
- $ ' (S,T)', / ' 6 = max | ( b A - a B )', A,
- $ ' l | / const. 7 = max | ( b A - a B ) r | / const.',
- $ / 1X )
- 9990 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
- 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I3, ' is', 1P, D10.3 )
- *
- * End of DDRVGG
- *
- END
|