You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strmmf.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. SUBROUTINE STRMMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  2. $ B, LDB )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  5. INTEGER M, N, LDA, LDB
  6. REAL ALPHA
  7. * .. Array Arguments ..
  8. REAL A( LDA, * ), B( LDB, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * STRMM performs one of the matrix-matrix operations
  15. *
  16. * B := alpha*op( A )*B, or B := alpha*B*op( A ),
  17. *
  18. * where alpha is a scalar, B is an m by n matrix, A is a unit, or
  19. * non-unit, upper or lower triangular matrix and op( A ) is one of
  20. *
  21. * op( A ) = A or op( A ) = A'.
  22. *
  23. * Parameters
  24. * ==========
  25. *
  26. * SIDE - CHARACTER*1.
  27. * On entry, SIDE specifies whether op( A ) multiplies B from
  28. * the left or right as follows:
  29. *
  30. * SIDE = 'L' or 'l' B := alpha*op( A )*B.
  31. *
  32. * SIDE = 'R' or 'r' B := alpha*B*op( A ).
  33. *
  34. * Unchanged on exit.
  35. *
  36. * UPLO - CHARACTER*1.
  37. * On entry, UPLO specifies whether the matrix A is an upper or
  38. * lower triangular matrix as follows:
  39. *
  40. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  41. *
  42. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  43. *
  44. * Unchanged on exit.
  45. *
  46. * TRANSA - CHARACTER*1.
  47. * On entry, TRANSA specifies the form of op( A ) to be used in
  48. * the matrix multiplication as follows:
  49. *
  50. * TRANSA = 'N' or 'n' op( A ) = A.
  51. *
  52. * TRANSA = 'T' or 't' op( A ) = A'.
  53. *
  54. * TRANSA = 'C' or 'c' op( A ) = A'.
  55. *
  56. * Unchanged on exit.
  57. *
  58. * DIAG - CHARACTER*1.
  59. * On entry, DIAG specifies whether or not A is unit triangular
  60. * as follows:
  61. *
  62. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  63. *
  64. * DIAG = 'N' or 'n' A is not assumed to be unit
  65. * triangular.
  66. *
  67. * Unchanged on exit.
  68. *
  69. * M - INTEGER.
  70. * On entry, M specifies the number of rows of B. M must be at
  71. * least zero.
  72. * Unchanged on exit.
  73. *
  74. * N - INTEGER.
  75. * On entry, N specifies the number of columns of B. N must be
  76. * at least zero.
  77. * Unchanged on exit.
  78. *
  79. * ALPHA - REAL .
  80. * On entry, ALPHA specifies the scalar alpha. When alpha is
  81. * zero then A is not referenced and B need not be set before
  82. * entry.
  83. * Unchanged on exit.
  84. *
  85. * A - REAL array of DIMENSION ( LDA, k ), where k is m
  86. * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  87. * Before entry with UPLO = 'U' or 'u', the leading k by k
  88. * upper triangular part of the array A must contain the upper
  89. * triangular matrix and the strictly lower triangular part of
  90. * A is not referenced.
  91. * Before entry with UPLO = 'L' or 'l', the leading k by k
  92. * lower triangular part of the array A must contain the lower
  93. * triangular matrix and the strictly upper triangular part of
  94. * A is not referenced.
  95. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  96. * A are not referenced either, but are assumed to be unity.
  97. * Unchanged on exit.
  98. *
  99. * LDA - INTEGER.
  100. * On entry, LDA specifies the first dimension of A as declared
  101. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  102. * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  103. * then LDA must be at least max( 1, n ).
  104. * Unchanged on exit.
  105. *
  106. * B - REAL array of DIMENSION ( LDB, n ).
  107. * Before entry, the leading m by n part of the array B must
  108. * contain the matrix B, and on exit is overwritten by the
  109. * transformed matrix.
  110. *
  111. * LDB - INTEGER.
  112. * On entry, LDB specifies the first dimension of B as declared
  113. * in the calling (sub) program. LDB must be at least
  114. * max( 1, m ).
  115. * Unchanged on exit.
  116. *
  117. *
  118. * Level 3 Blas routine.
  119. *
  120. * -- Written on 8-February-1989.
  121. * Jack Dongarra, Argonne National Laboratory.
  122. * Iain Duff, AERE Harwell.
  123. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  124. * Sven Hammarling, Numerical Algorithms Group Ltd.
  125. *
  126. *
  127. * .. External Functions ..
  128. LOGICAL LSAME
  129. EXTERNAL LSAME
  130. * .. External Subroutines ..
  131. EXTERNAL XERBLA
  132. * .. Intrinsic Functions ..
  133. INTRINSIC MAX
  134. * .. Local Scalars ..
  135. LOGICAL LSIDE, NOUNIT, UPPER
  136. INTEGER I, INFO, J, K, NROWA
  137. REAL TEMP
  138. * .. Parameters ..
  139. REAL ONE , ZERO
  140. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  141. * ..
  142. * .. Executable Statements ..
  143. *
  144. * Test the input parameters.
  145. *
  146. LSIDE = LSAME( SIDE , 'L' )
  147. IF( LSIDE )THEN
  148. NROWA = M
  149. ELSE
  150. NROWA = N
  151. END IF
  152. NOUNIT = LSAME( DIAG , 'N' )
  153. UPPER = LSAME( UPLO , 'U' )
  154. *
  155. INFO = 0
  156. IF( ( .NOT.LSIDE ).AND.
  157. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  158. INFO = 1
  159. ELSE IF( ( .NOT.UPPER ).AND.
  160. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  161. INFO = 2
  162. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  163. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  164. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  165. INFO = 3
  166. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  167. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  168. INFO = 4
  169. ELSE IF( M .LT.0 )THEN
  170. INFO = 5
  171. ELSE IF( N .LT.0 )THEN
  172. INFO = 6
  173. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  174. INFO = 9
  175. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  176. INFO = 11
  177. END IF
  178. IF( INFO.NE.0 )THEN
  179. CALL XERBLA( 'STRMM ', INFO )
  180. RETURN
  181. END IF
  182. *
  183. * Quick return if possible.
  184. *
  185. IF( N.EQ.0 )
  186. $ RETURN
  187. *
  188. * And when alpha.eq.zero.
  189. *
  190. IF( ALPHA.EQ.ZERO )THEN
  191. DO 20, J = 1, N
  192. DO 10, I = 1, M
  193. B( I, J ) = ZERO
  194. 10 CONTINUE
  195. 20 CONTINUE
  196. RETURN
  197. END IF
  198. *
  199. * Start the operations.
  200. *
  201. IF( LSIDE )THEN
  202. IF( LSAME( TRANSA, 'N' ) )THEN
  203. *
  204. * Form B := alpha*A*B.
  205. *
  206. IF( UPPER )THEN
  207. DO 50, J = 1, N
  208. DO 40, K = 1, M
  209. IF( B( K, J ).NE.ZERO )THEN
  210. TEMP = ALPHA*B( K, J )
  211. DO 30, I = 1, K - 1
  212. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  213. 30 CONTINUE
  214. IF( NOUNIT )
  215. $ TEMP = TEMP*A( K, K )
  216. B( K, J ) = TEMP
  217. END IF
  218. 40 CONTINUE
  219. 50 CONTINUE
  220. ELSE
  221. DO 80, J = 1, N
  222. DO 70 K = M, 1, -1
  223. IF( B( K, J ).NE.ZERO )THEN
  224. TEMP = ALPHA*B( K, J )
  225. B( K, J ) = TEMP
  226. IF( NOUNIT )
  227. $ B( K, J ) = B( K, J )*A( K, K )
  228. DO 60, I = K + 1, M
  229. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  230. 60 CONTINUE
  231. END IF
  232. 70 CONTINUE
  233. 80 CONTINUE
  234. END IF
  235. ELSE
  236. *
  237. * Form B := alpha*A'*B.
  238. *
  239. IF( UPPER )THEN
  240. DO 110, J = 1, N
  241. DO 100, I = M, 1, -1
  242. TEMP = B( I, J )
  243. IF( NOUNIT )
  244. $ TEMP = TEMP*A( I, I )
  245. DO 90, K = 1, I - 1
  246. TEMP = TEMP + A( K, I )*B( K, J )
  247. 90 CONTINUE
  248. B( I, J ) = ALPHA*TEMP
  249. 100 CONTINUE
  250. 110 CONTINUE
  251. ELSE
  252. DO 140, J = 1, N
  253. DO 130, I = 1, M
  254. TEMP = B( I, J )
  255. IF( NOUNIT )
  256. $ TEMP = TEMP*A( I, I )
  257. DO 120, K = I + 1, M
  258. TEMP = TEMP + A( K, I )*B( K, J )
  259. 120 CONTINUE
  260. B( I, J ) = ALPHA*TEMP
  261. 130 CONTINUE
  262. 140 CONTINUE
  263. END IF
  264. END IF
  265. ELSE
  266. IF( LSAME( TRANSA, 'N' ) )THEN
  267. *
  268. * Form B := alpha*B*A.
  269. *
  270. IF( UPPER )THEN
  271. DO 180, J = N, 1, -1
  272. TEMP = ALPHA
  273. IF( NOUNIT )
  274. $ TEMP = TEMP*A( J, J )
  275. DO 150, I = 1, M
  276. B( I, J ) = TEMP*B( I, J )
  277. 150 CONTINUE
  278. DO 170, K = 1, J - 1
  279. IF( A( K, J ).NE.ZERO )THEN
  280. TEMP = ALPHA*A( K, J )
  281. DO 160, I = 1, M
  282. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  283. 160 CONTINUE
  284. END IF
  285. 170 CONTINUE
  286. 180 CONTINUE
  287. ELSE
  288. DO 220, J = 1, N
  289. TEMP = ALPHA
  290. IF( NOUNIT )
  291. $ TEMP = TEMP*A( J, J )
  292. DO 190, I = 1, M
  293. B( I, J ) = TEMP*B( I, J )
  294. 190 CONTINUE
  295. DO 210, K = J + 1, N
  296. IF( A( K, J ).NE.ZERO )THEN
  297. TEMP = ALPHA*A( K, J )
  298. DO 200, I = 1, M
  299. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  300. 200 CONTINUE
  301. END IF
  302. 210 CONTINUE
  303. 220 CONTINUE
  304. END IF
  305. ELSE
  306. *
  307. * Form B := alpha*B*A'.
  308. *
  309. IF( UPPER )THEN
  310. DO 260, K = 1, N
  311. DO 240, J = 1, K - 1
  312. IF( A( J, K ).NE.ZERO )THEN
  313. TEMP = ALPHA*A( J, K )
  314. DO 230, I = 1, M
  315. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  316. 230 CONTINUE
  317. END IF
  318. 240 CONTINUE
  319. TEMP = ALPHA
  320. IF( NOUNIT )
  321. $ TEMP = TEMP*A( K, K )
  322. IF( TEMP.NE.ONE )THEN
  323. DO 250, I = 1, M
  324. B( I, K ) = TEMP*B( I, K )
  325. 250 CONTINUE
  326. END IF
  327. 260 CONTINUE
  328. ELSE
  329. DO 300, K = N, 1, -1
  330. DO 280, J = K + 1, N
  331. IF( A( J, K ).NE.ZERO )THEN
  332. TEMP = ALPHA*A( J, K )
  333. DO 270, I = 1, M
  334. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  335. 270 CONTINUE
  336. END IF
  337. 280 CONTINUE
  338. TEMP = ALPHA
  339. IF( NOUNIT )
  340. $ TEMP = TEMP*A( K, K )
  341. IF( TEMP.NE.ONE )THEN
  342. DO 290, I = 1, M
  343. B( I, K ) = TEMP*B( I, K )
  344. 290 CONTINUE
  345. END IF
  346. 300 CONTINUE
  347. END IF
  348. END IF
  349. END IF
  350. *
  351. RETURN
  352. *
  353. * End of STRMM .
  354. *
  355. END