You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrmvf.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. SUBROUTINE CTRMVF ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, LDA, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. COMPLEX A( LDA, * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * CTRMV performs one of the matrix-vector operations
  13. *
  14. * x := A*x, or x := A'*x, or x := conjg( A' )*x,
  15. *
  16. * where x is an n element vector and A is an n by n unit, or non-unit,
  17. * upper or lower triangular matrix.
  18. *
  19. * Parameters
  20. * ==========
  21. *
  22. * UPLO - CHARACTER*1.
  23. * On entry, UPLO specifies whether the matrix is an upper or
  24. * lower triangular matrix as follows:
  25. *
  26. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  27. *
  28. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  29. *
  30. * Unchanged on exit.
  31. *
  32. * TRANS - CHARACTER*1.
  33. * On entry, TRANS specifies the operation to be performed as
  34. * follows:
  35. *
  36. * TRANS = 'N' or 'n' x := A*x.
  37. *
  38. * TRANS = 'T' or 't' x := A'*x.
  39. *
  40. * TRANS = 'C' or 'c' x := conjg( A' )*x.
  41. *
  42. * Unchanged on exit.
  43. *
  44. * DIAG - CHARACTER*1.
  45. * On entry, DIAG specifies whether or not A is unit
  46. * triangular as follows:
  47. *
  48. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  49. *
  50. * DIAG = 'N' or 'n' A is not assumed to be unit
  51. * triangular.
  52. *
  53. * Unchanged on exit.
  54. *
  55. * N - INTEGER.
  56. * On entry, N specifies the order of the matrix A.
  57. * N must be at least zero.
  58. * Unchanged on exit.
  59. *
  60. * A - COMPLEX array of DIMENSION ( LDA, n ).
  61. * Before entry with UPLO = 'U' or 'u', the leading n by n
  62. * upper triangular part of the array A must contain the upper
  63. * triangular matrix and the strictly lower triangular part of
  64. * A is not referenced.
  65. * Before entry with UPLO = 'L' or 'l', the leading n by n
  66. * lower triangular part of the array A must contain the lower
  67. * triangular matrix and the strictly upper triangular part of
  68. * A is not referenced.
  69. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  70. * A are not referenced either, but are assumed to be unity.
  71. * Unchanged on exit.
  72. *
  73. * LDA - INTEGER.
  74. * On entry, LDA specifies the first dimension of A as declared
  75. * in the calling (sub) program. LDA must be at least
  76. * max( 1, n ).
  77. * Unchanged on exit.
  78. *
  79. * X - COMPLEX array of dimension at least
  80. * ( 1 + ( n - 1 )*abs( INCX ) ).
  81. * Before entry, the incremented array X must contain the n
  82. * element vector x. On exit, X is overwritten with the
  83. * tranformed vector x.
  84. *
  85. * INCX - INTEGER.
  86. * On entry, INCX specifies the increment for the elements of
  87. * X. INCX must not be zero.
  88. * Unchanged on exit.
  89. *
  90. *
  91. * Level 2 Blas routine.
  92. *
  93. * -- Written on 22-October-1986.
  94. * Jack Dongarra, Argonne National Lab.
  95. * Jeremy Du Croz, Nag Central Office.
  96. * Sven Hammarling, Nag Central Office.
  97. * Richard Hanson, Sandia National Labs.
  98. *
  99. *
  100. * .. Parameters ..
  101. COMPLEX ZERO
  102. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  103. * .. Local Scalars ..
  104. COMPLEX TEMP
  105. INTEGER I, INFO, IX, J, JX, KX
  106. LOGICAL NOCONJ, NOUNIT
  107. * .. External Functions ..
  108. LOGICAL LSAME
  109. EXTERNAL LSAME
  110. * .. External Subroutines ..
  111. EXTERNAL XERBLA
  112. * .. Intrinsic Functions ..
  113. INTRINSIC CONJG, MAX
  114. * ..
  115. * .. Executable Statements ..
  116. *
  117. * Test the input parameters.
  118. *
  119. INFO = 0
  120. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  121. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  122. INFO = 1
  123. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  124. $ .NOT.LSAME( TRANS, 'T' ).AND.
  125. $ .NOT.LSAME( TRANS, 'R' ).AND.
  126. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  127. INFO = 2
  128. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  129. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  130. INFO = 3
  131. ELSE IF( N.LT.0 )THEN
  132. INFO = 4
  133. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  134. INFO = 6
  135. ELSE IF( INCX.EQ.0 )THEN
  136. INFO = 8
  137. END IF
  138. IF( INFO.NE.0 )THEN
  139. CALL XERBLA( 'CTRMV ', INFO )
  140. RETURN
  141. END IF
  142. *
  143. * Quick return if possible.
  144. *
  145. IF( N.EQ.0 )
  146. $ RETURN
  147. *
  148. NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  149. NOUNIT = LSAME( DIAG , 'N' )
  150. *
  151. * Set up the start point in X if the increment is not unity. This
  152. * will be ( N - 1 )*INCX too small for descending loops.
  153. *
  154. IF( INCX.LE.0 )THEN
  155. KX = 1 - ( N - 1 )*INCX
  156. ELSE IF( INCX.NE.1 )THEN
  157. KX = 1
  158. END IF
  159. *
  160. * Start the operations. In this version the elements of A are
  161. * accessed sequentially with one pass through A.
  162. *
  163. IF( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' ))THEN
  164. *
  165. * Form x := A*x.
  166. *
  167. IF( LSAME( UPLO, 'U' ) )THEN
  168. IF( INCX.EQ.1 )THEN
  169. DO 20, J = 1, N
  170. IF( X( J ).NE.ZERO )THEN
  171. TEMP = X( J )
  172. DO 10, I = 1, J - 1
  173. IF (NOCONJ) THEN
  174. X( I ) = X( I ) + TEMP*A( I, J )
  175. ELSE
  176. X( I ) = X( I ) + TEMP*CONJG(A( I, J ))
  177. ENDIF
  178. 10 CONTINUE
  179. IF (NOCONJ) THEN
  180. IF( NOUNIT )
  181. $ X( J ) = X( J )*A( J, J )
  182. ELSE
  183. IF( NOUNIT )
  184. $ X( J ) = X( J )*CONJG(A( J, J ))
  185. ENDIF
  186. END IF
  187. 20 CONTINUE
  188. ELSE
  189. JX = KX
  190. DO 40, J = 1, N
  191. IF( X( JX ).NE.ZERO )THEN
  192. TEMP = X( JX )
  193. IX = KX
  194. DO 30, I = 1, J - 1
  195. IF (NOCONJ) THEN
  196. X( IX ) = X( IX ) + TEMP*A( I, J )
  197. ELSE
  198. X( IX ) = X( IX ) + TEMP*CONJG(A( I, J ))
  199. ENDIF
  200. IX = IX + INCX
  201. 30 CONTINUE
  202. IF (NOCONJ) THEN
  203. IF( NOUNIT )
  204. $ X( JX ) = X( JX )*A( J, J )
  205. ELSE
  206. IF( NOUNIT )
  207. $ X( JX ) = X( JX )*CONJG(A( J, J ))
  208. ENDIF
  209. END IF
  210. JX = JX + INCX
  211. 40 CONTINUE
  212. END IF
  213. ELSE
  214. IF( INCX.EQ.1 )THEN
  215. DO 60, J = N, 1, -1
  216. IF( X( J ).NE.ZERO )THEN
  217. TEMP = X( J )
  218. DO 50, I = N, J + 1, -1
  219. IF (NOCONJ) THEN
  220. X( I ) = X( I ) + TEMP*A( I, J )
  221. ELSE
  222. X( I ) = X( I ) + TEMP*CONJG(A( I, J ))
  223. ENDIF
  224. 50 CONTINUE
  225. IF (NOCONJ) THEN
  226. IF( NOUNIT )
  227. $ X( J ) = X( J )*A( J, J )
  228. ELSE
  229. IF( NOUNIT )
  230. $ X( J ) = X( J )*CONJG(A( J, J ))
  231. ENDIF
  232. END IF
  233. 60 CONTINUE
  234. ELSE
  235. KX = KX + ( N - 1 )*INCX
  236. JX = KX
  237. DO 80, J = N, 1, -1
  238. IF( X( JX ).NE.ZERO )THEN
  239. TEMP = X( JX )
  240. IX = KX
  241. DO 70, I = N, J + 1, -1
  242. IF (NOCONJ) THEN
  243. X( IX ) = X( IX ) + TEMP*A( I, J )
  244. ELSE
  245. X( IX ) = X( IX ) + TEMP*CONJG(A( I, J ))
  246. ENDIF
  247. IX = IX - INCX
  248. 70 CONTINUE
  249. IF (NOCONJ) THEN
  250. IF( NOUNIT )
  251. $ X( JX ) = X( JX )*A( J, J )
  252. ELSE
  253. IF( NOUNIT )
  254. $ X( JX ) = X( JX )*CONJG(A( J, J ))
  255. ENDIF
  256. END IF
  257. JX = JX - INCX
  258. 80 CONTINUE
  259. END IF
  260. END IF
  261. ELSE
  262. *
  263. * Form x := A'*x or x := conjg( A' )*x.
  264. *
  265. IF( LSAME( UPLO, 'U' ) )THEN
  266. IF( INCX.EQ.1 )THEN
  267. DO 110, J = N, 1, -1
  268. TEMP = X( J )
  269. IF( NOCONJ )THEN
  270. IF( NOUNIT )
  271. $ TEMP = TEMP*A( J, J )
  272. DO 90, I = J - 1, 1, -1
  273. TEMP = TEMP + A( I, J )*X( I )
  274. 90 CONTINUE
  275. ELSE
  276. IF( NOUNIT )
  277. $ TEMP = TEMP*CONJG( A( J, J ) )
  278. DO 100, I = J - 1, 1, -1
  279. TEMP = TEMP + CONJG( A( I, J ) )*X( I )
  280. 100 CONTINUE
  281. END IF
  282. X( J ) = TEMP
  283. 110 CONTINUE
  284. ELSE
  285. JX = KX + ( N - 1 )*INCX
  286. DO 140, J = N, 1, -1
  287. TEMP = X( JX )
  288. IX = JX
  289. IF( NOCONJ )THEN
  290. IF( NOUNIT )
  291. $ TEMP = TEMP*A( J, J )
  292. DO 120, I = J - 1, 1, -1
  293. IX = IX - INCX
  294. TEMP = TEMP + A( I, J )*X( IX )
  295. 120 CONTINUE
  296. ELSE
  297. IF( NOUNIT )
  298. $ TEMP = TEMP*CONJG( A( J, J ) )
  299. DO 130, I = J - 1, 1, -1
  300. IX = IX - INCX
  301. TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
  302. 130 CONTINUE
  303. END IF
  304. X( JX ) = TEMP
  305. JX = JX - INCX
  306. 140 CONTINUE
  307. END IF
  308. ELSE
  309. IF( INCX.EQ.1 )THEN
  310. DO 170, J = 1, N
  311. TEMP = X( J )
  312. IF( NOCONJ )THEN
  313. IF( NOUNIT )
  314. $ TEMP = TEMP*A( J, J )
  315. DO 150, I = J + 1, N
  316. TEMP = TEMP + A( I, J )*X( I )
  317. 150 CONTINUE
  318. ELSE
  319. IF( NOUNIT )
  320. $ TEMP = TEMP*CONJG( A( J, J ) )
  321. DO 160, I = J + 1, N
  322. TEMP = TEMP + CONJG( A( I, J ) )*X( I )
  323. 160 CONTINUE
  324. END IF
  325. X( J ) = TEMP
  326. 170 CONTINUE
  327. ELSE
  328. JX = KX
  329. DO 200, J = 1, N
  330. TEMP = X( JX )
  331. IX = JX
  332. IF( NOCONJ )THEN
  333. IF( NOUNIT )
  334. $ TEMP = TEMP*A( J, J )
  335. DO 180, I = J + 1, N
  336. IX = IX + INCX
  337. TEMP = TEMP + A( I, J )*X( IX )
  338. 180 CONTINUE
  339. ELSE
  340. IF( NOUNIT )
  341. $ TEMP = TEMP*CONJG( A( J, J ) )
  342. DO 190, I = J + 1, N
  343. IX = IX + INCX
  344. TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
  345. 190 CONTINUE
  346. END IF
  347. X( JX ) = TEMP
  348. JX = JX + INCX
  349. 200 CONTINUE
  350. END IF
  351. END IF
  352. END IF
  353. *
  354. RETURN
  355. *
  356. * End of CTRMV .
  357. *
  358. END