You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gemm.c 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*********************************************************************/
  2. /* Copyright 2024, 2025 The OpenBLAS Project */
  3. /* Copyright 2009, 2010 The University of Texas at Austin. */
  4. /* All rights reserved. */
  5. /* */
  6. /* Redistribution and use in source and binary forms, with or */
  7. /* without modification, are permitted provided that the following */
  8. /* conditions are met: */
  9. /* */
  10. /* 1. Redistributions of source code must retain the above */
  11. /* copyright notice, this list of conditions and the following */
  12. /* disclaimer. */
  13. /* */
  14. /* 2. Redistributions in binary form must reproduce the above */
  15. /* copyright notice, this list of conditions and the following */
  16. /* disclaimer in the documentation and/or other materials */
  17. /* provided with the distribution. */
  18. /* */
  19. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  20. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  21. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  22. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  23. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  24. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  25. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  26. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  27. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  28. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  29. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  30. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  31. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  32. /* POSSIBILITY OF SUCH DAMAGE. */
  33. /* */
  34. /* The views and conclusions contained in the software and */
  35. /* documentation are those of the authors and should not be */
  36. /* interpreted as representing official policies, either expressed */
  37. /* or implied, of The University of Texas at Austin. */
  38. /*********************************************************************/
  39. #include <stdio.h>
  40. #include <stdlib.h>
  41. #include <stdbool.h>
  42. #include "common.h"
  43. #ifdef FUNCTION_PROFILE
  44. #include "functable.h"
  45. #endif
  46. #ifndef COMPLEX
  47. #define SMP_THRESHOLD_MIN 65536.0
  48. #ifdef XDOUBLE
  49. #define ERROR_NAME "QGEMM "
  50. #define GEMV BLASFUNC(qgemv)
  51. #elif defined(DOUBLE)
  52. #define ERROR_NAME "DGEMM "
  53. #define GEMV BLASFUNC(dgemv)
  54. #elif defined(BFLOAT16)
  55. #define ERROR_NAME "SBGEMM "
  56. #define GEMV BLASFUNC(sbgemv)
  57. #else
  58. #define ERROR_NAME "SGEMM "
  59. #define GEMV BLASFUNC(sgemv)
  60. #endif
  61. #else
  62. #define SMP_THRESHOLD_MIN 8192.0
  63. #ifndef GEMM3M
  64. #ifdef XDOUBLE
  65. #define ERROR_NAME "XGEMM "
  66. #elif defined(DOUBLE)
  67. #define ERROR_NAME "ZGEMM "
  68. #else
  69. #define ERROR_NAME "CGEMM "
  70. #endif
  71. #else
  72. #ifdef XDOUBLE
  73. #define ERROR_NAME "XGEMM3M "
  74. #elif defined(DOUBLE)
  75. #define ERROR_NAME "ZGEMM3M "
  76. #else
  77. #define ERROR_NAME "CGEMM3M "
  78. #endif
  79. #endif
  80. #endif
  81. #ifndef GEMM_MULTITHREAD_THRESHOLD
  82. #define GEMM_MULTITHREAD_THRESHOLD 4
  83. #endif
  84. static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, IFLOAT *, IFLOAT *, BLASLONG) = {
  85. #if !defined(GEMM3M) || defined(GENERIC)
  86. GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN,
  87. GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT,
  88. GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR,
  89. GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC,
  90. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  91. GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN,
  92. GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT,
  93. GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR,
  94. GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC,
  95. #endif
  96. #else
  97. GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN,
  98. GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT,
  99. GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR,
  100. GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC,
  101. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  102. GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN,
  103. GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT,
  104. GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR,
  105. GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC,
  106. #endif
  107. #endif
  108. };
  109. #if defined(SMALL_MATRIX_OPT) && !defined(GEMM3M) && !defined(XDOUBLE)
  110. #define USE_SMALL_MATRIX_OPT 1
  111. #else
  112. #define USE_SMALL_MATRIX_OPT 0
  113. #endif
  114. #if USE_SMALL_MATRIX_OPT
  115. #ifndef DYNAMIC_ARCH
  116. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(table[idx]))
  117. #else
  118. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(*(uintptr_t *)((char *)gotoblas + (size_t)(table[idx]))))
  119. #endif
  120. #ifndef COMPLEX
  121. static size_t gemm_small_kernel[] = {
  122. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, 0, 0,
  123. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, 0, 0,
  124. };
  125. static size_t gemm_small_kernel_b0[] = {
  126. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, 0, 0,
  127. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, 0, 0,
  128. };
  129. #define GEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel_b0, (idx))
  130. #define GEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel, (idx))
  131. #else
  132. static size_t zgemm_small_kernel[] = {
  133. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, GEMM_SMALL_KERNEL_RN, GEMM_SMALL_KERNEL_CN,
  134. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, GEMM_SMALL_KERNEL_RT, GEMM_SMALL_KERNEL_CT,
  135. GEMM_SMALL_KERNEL_NR, GEMM_SMALL_KERNEL_TR, GEMM_SMALL_KERNEL_RR, GEMM_SMALL_KERNEL_CR,
  136. GEMM_SMALL_KERNEL_NC, GEMM_SMALL_KERNEL_TC, GEMM_SMALL_KERNEL_RC, GEMM_SMALL_KERNEL_CC,
  137. };
  138. static size_t zgemm_small_kernel_b0[] = {
  139. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, GEMM_SMALL_KERNEL_B0_RN, GEMM_SMALL_KERNEL_B0_CN,
  140. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, GEMM_SMALL_KERNEL_B0_RT, GEMM_SMALL_KERNEL_B0_CT,
  141. GEMM_SMALL_KERNEL_B0_NR, GEMM_SMALL_KERNEL_B0_TR, GEMM_SMALL_KERNEL_B0_RR, GEMM_SMALL_KERNEL_B0_CR,
  142. GEMM_SMALL_KERNEL_B0_NC, GEMM_SMALL_KERNEL_B0_TC, GEMM_SMALL_KERNEL_B0_RC, GEMM_SMALL_KERNEL_B0_CC,
  143. };
  144. #define ZGEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel, (idx))
  145. #define ZGEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel_b0, (idx))
  146. #endif
  147. #endif
  148. #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  149. #define XFEATURE_XTILEDATA 18
  150. #define ARCH_REQ_XCOMP_PERM 0x1023
  151. static int openblas_amxtile_permission = 0;
  152. static int init_amxtile_permission() {
  153. long status =
  154. syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA);
  155. if (status != 0) {
  156. fprintf(stderr, "XTILEDATA permission not granted in your device(Linux, "
  157. "Intel Sapphier Rapids), skip sbgemm calculation\n");
  158. return -1;
  159. }
  160. openblas_amxtile_permission = 1;
  161. return 0;
  162. }
  163. #endif
  164. #ifdef SMP
  165. #ifdef DYNAMIC_ARCH
  166. extern char* gotoblas_corename(void);
  167. #endif
  168. #if defined(DYNAMIC_ARCH) || defined(NEOVERSEV1)
  169. static inline int get_gemm_optimal_nthreads_neoversev1(double MNK, int ncpu) {
  170. return
  171. MNK < 262144L ? 1
  172. : MNK < 1124864L ? MIN(ncpu, 6)
  173. : MNK < 7880599L ? MIN(ncpu, 12)
  174. : MNK < 17173512L ? MIN(ncpu, 16)
  175. : MNK < 33386248L ? MIN(ncpu, 20)
  176. : MNK < 57066625L ? MIN(ncpu, 24)
  177. : MNK < 91733851L ? MIN(ncpu, 32)
  178. : MNK < 265847707L ? MIN(ncpu, 40)
  179. : MNK < 458314011L ? MIN(ncpu, 48)
  180. : MNK < 729000000L ? MIN(ncpu, 56)
  181. : ncpu;
  182. }
  183. #endif
  184. #if defined(DYNAMIC_ARCH) || defined(NEOVERSEV2)
  185. static inline int get_gemm_optimal_nthreads_neoversev2(double MNK, int ncpu) {
  186. return
  187. MNK < 125000L ? 1
  188. : MNK < 1092727L ? MIN(ncpu, 6)
  189. : MNK < 2628072L ? MIN(ncpu, 8)
  190. : MNK < 8000000L ? MIN(ncpu, 12)
  191. : MNK < 20346417L ? MIN(ncpu, 16)
  192. : MNK < 57066625L ? MIN(ncpu, 24)
  193. : MNK < 91125000L ? MIN(ncpu, 28)
  194. : MNK < 238328000L ? MIN(ncpu, 40)
  195. : MNK < 454756609L ? MIN(ncpu, 48)
  196. : MNK < 857375000L ? MIN(ncpu, 56)
  197. : MNK < 1073741824L ? MIN(ncpu, 64)
  198. : ncpu;
  199. }
  200. #endif
  201. static inline int get_gemm_optimal_nthreads(double MNK) {
  202. int ncpu = num_cpu_avail(3);
  203. #if defined(NEOVERSEV1) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16)
  204. return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu);
  205. #elif defined(NEOVERSEV2) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16)
  206. return get_gemm_optimal_nthreads_neoversev2(MNK, ncpu);
  207. #elif defined(DYNAMIC_ARCH) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16)
  208. if (strcmp(gotoblas_corename(), "neoversev1") == 0) {
  209. return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu);
  210. }
  211. if (strcmp(gotoblas_corename(), "neoversev2") == 0) {
  212. return get_gemm_optimal_nthreads_neoversev2(MNK, ncpu);
  213. }
  214. #endif
  215. if ( MNK <= (SMP_THRESHOLD_MIN * (double) GEMM_MULTITHREAD_THRESHOLD) ) {
  216. return 1;
  217. }
  218. else {
  219. if (MNK/ncpu < SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD) {
  220. return MNK/(SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD);
  221. }
  222. else {
  223. return ncpu;
  224. }
  225. }
  226. }
  227. #endif
  228. #ifndef CBLAS
  229. void NAME(char *TRANSA, char *TRANSB,
  230. blasint *M, blasint *N, blasint *K,
  231. FLOAT *alpha,
  232. IFLOAT *a, blasint *ldA,
  233. IFLOAT *b, blasint *ldB,
  234. FLOAT *beta,
  235. FLOAT *c, blasint *ldC){
  236. blas_arg_t args;
  237. int transa, transb, nrowa, nrowb;
  238. blasint info;
  239. char transA, transB;
  240. IFLOAT *buffer;
  241. IFLOAT *sa, *sb;
  242. #ifdef SMP
  243. double MNK;
  244. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  245. #ifndef COMPLEX
  246. #ifdef XDOUBLE
  247. int mode = BLAS_XDOUBLE | BLAS_REAL;
  248. #elif defined(DOUBLE)
  249. int mode = BLAS_DOUBLE | BLAS_REAL;
  250. #else
  251. int mode = BLAS_SINGLE | BLAS_REAL;
  252. #endif
  253. #else
  254. #ifdef XDOUBLE
  255. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  256. #elif defined(DOUBLE)
  257. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  258. #else
  259. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  260. #endif
  261. #endif
  262. #endif
  263. #endif
  264. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  265. int nodes;
  266. #endif
  267. PRINT_DEBUG_NAME;
  268. args.m = *M;
  269. args.n = *N;
  270. args.k = *K;
  271. args.a = (void *)a;
  272. args.b = (void *)b;
  273. args.c = (void *)c;
  274. args.lda = *ldA;
  275. args.ldb = *ldB;
  276. args.ldc = *ldC;
  277. args.alpha = (void *)alpha;
  278. args.beta = (void *)beta;
  279. transA = *TRANSA;
  280. transB = *TRANSB;
  281. TOUPPER(transA);
  282. TOUPPER(transB);
  283. transa = -1;
  284. transb = -1;
  285. if (transA == 'N') transa = 0;
  286. if (transA == 'T') transa = 1;
  287. #ifndef COMPLEX
  288. if (transA == 'R') transa = 0;
  289. if (transA == 'C') transa = 1;
  290. #else
  291. if (transA == 'R') transa = 2;
  292. if (transA == 'C') transa = 3;
  293. #endif
  294. if (transB == 'N') transb = 0;
  295. if (transB == 'T') transb = 1;
  296. #ifndef COMPLEX
  297. if (transB == 'R') transb = 0;
  298. if (transB == 'C') transb = 1;
  299. #else
  300. if (transB == 'R') transb = 2;
  301. if (transB == 'C') transb = 3;
  302. #endif
  303. nrowa = args.m;
  304. if (transa & 1) nrowa = args.k;
  305. nrowb = args.k;
  306. if (transb & 1) nrowb = args.n;
  307. info = 0;
  308. if (args.ldc < args.m) info = 13;
  309. if (args.ldb < nrowb) info = 10;
  310. if (args.lda < nrowa) info = 8;
  311. if (args.k < 0) info = 5;
  312. if (args.n < 0) info = 4;
  313. if (args.m < 0) info = 3;
  314. if (transb < 0) info = 2;
  315. if (transa < 0) info = 1;
  316. if (info){
  317. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  318. return;
  319. }
  320. #else
  321. void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB,
  322. blasint m, blasint n, blasint k,
  323. #ifndef COMPLEX
  324. FLOAT alpha,
  325. IFLOAT *a, blasint lda,
  326. IFLOAT *b, blasint ldb,
  327. FLOAT beta,
  328. FLOAT *c, blasint ldc) {
  329. #else
  330. void *valpha,
  331. void *va, blasint lda,
  332. void *vb, blasint ldb,
  333. void *vbeta,
  334. void *vc, blasint ldc) {
  335. FLOAT *alpha = (FLOAT*) valpha;
  336. FLOAT *beta = (FLOAT*) vbeta;
  337. FLOAT *a = (FLOAT*) va;
  338. FLOAT *b = (FLOAT*) vb;
  339. FLOAT *c = (FLOAT*) vc;
  340. #endif
  341. blas_arg_t args;
  342. int transa, transb;
  343. blasint nrowa, nrowb, info;
  344. XFLOAT *buffer;
  345. XFLOAT *sa, *sb;
  346. #ifdef SMP
  347. double MNK;
  348. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  349. #ifndef COMPLEX
  350. #ifdef XDOUBLE
  351. int mode = BLAS_XDOUBLE | BLAS_REAL;
  352. #elif defined(DOUBLE)
  353. int mode = BLAS_DOUBLE | BLAS_REAL;
  354. #else
  355. int mode = BLAS_SINGLE | BLAS_REAL;
  356. #endif
  357. #else
  358. #ifdef XDOUBLE
  359. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  360. #elif defined(DOUBLE)
  361. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  362. #else
  363. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  364. #endif
  365. #endif
  366. #endif
  367. #endif
  368. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  369. int nodes;
  370. #endif
  371. PRINT_DEBUG_CNAME;
  372. #if !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16)
  373. #if defined(ARCH_x86) && (defined(USE_SGEMM_KERNEL_DIRECT)||defined(DYNAMIC_ARCH))
  374. #if defined(DYNAMIC_ARCH)
  375. if (support_avx512() )
  376. #endif
  377. if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && SGEMM_DIRECT_PERFORMANT(m,n,k)) {
  378. SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
  379. return;
  380. }
  381. #endif
  382. #if defined(ARCH_ARM64) && (defined(USE_SGEMM_KERNEL_DIRECT)||defined(DYNAMIC_ARCH))
  383. #if defined(DYNAMIC_ARCH)
  384. if (support_sme1())
  385. #endif
  386. if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans) {
  387. SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
  388. return;
  389. }
  390. #endif
  391. #endif
  392. #ifndef COMPLEX
  393. args.alpha = (void *)&alpha;
  394. args.beta = (void *)&beta;
  395. #else
  396. args.alpha = (void *)alpha;
  397. args.beta = (void *)beta;
  398. #endif
  399. transa = -1;
  400. transb = -1;
  401. info = 0;
  402. if (order == CblasColMajor) {
  403. args.m = m;
  404. args.n = n;
  405. args.k = k;
  406. args.a = (void *)a;
  407. args.b = (void *)b;
  408. args.c = (void *)c;
  409. args.lda = lda;
  410. args.ldb = ldb;
  411. args.ldc = ldc;
  412. if (TransA == CblasNoTrans) transa = 0;
  413. if (TransA == CblasTrans) transa = 1;
  414. #ifndef COMPLEX
  415. if (TransA == CblasConjNoTrans) transa = 0;
  416. if (TransA == CblasConjTrans) transa = 1;
  417. #else
  418. if (TransA == CblasConjNoTrans) transa = 2;
  419. if (TransA == CblasConjTrans) transa = 3;
  420. #endif
  421. if (TransB == CblasNoTrans) transb = 0;
  422. if (TransB == CblasTrans) transb = 1;
  423. #ifndef COMPLEX
  424. if (TransB == CblasConjNoTrans) transb = 0;
  425. if (TransB == CblasConjTrans) transb = 1;
  426. #else
  427. if (TransB == CblasConjNoTrans) transb = 2;
  428. if (TransB == CblasConjTrans) transb = 3;
  429. #endif
  430. nrowa = args.m;
  431. if (transa & 1) nrowa = args.k;
  432. nrowb = args.k;
  433. if (transb & 1) nrowb = args.n;
  434. info = -1;
  435. if (args.ldc < args.m) info = 13;
  436. if (args.ldb < nrowb) info = 10;
  437. if (args.lda < nrowa) info = 8;
  438. if (args.k < 0) info = 5;
  439. if (args.n < 0) info = 4;
  440. if (args.m < 0) info = 3;
  441. if (transb < 0) info = 2;
  442. if (transa < 0) info = 1;
  443. }
  444. if (order == CblasRowMajor) {
  445. args.m = n;
  446. args.n = m;
  447. args.k = k;
  448. args.a = (void *)b;
  449. args.b = (void *)a;
  450. args.c = (void *)c;
  451. args.lda = ldb;
  452. args.ldb = lda;
  453. args.ldc = ldc;
  454. if (TransB == CblasNoTrans) transa = 0;
  455. if (TransB == CblasTrans) transa = 1;
  456. #ifndef COMPLEX
  457. if (TransB == CblasConjNoTrans) transa = 0;
  458. if (TransB == CblasConjTrans) transa = 1;
  459. #else
  460. if (TransB == CblasConjNoTrans) transa = 2;
  461. if (TransB == CblasConjTrans) transa = 3;
  462. #endif
  463. if (TransA == CblasNoTrans) transb = 0;
  464. if (TransA == CblasTrans) transb = 1;
  465. #ifndef COMPLEX
  466. if (TransA == CblasConjNoTrans) transb = 0;
  467. if (TransA == CblasConjTrans) transb = 1;
  468. #else
  469. if (TransA == CblasConjNoTrans) transb = 2;
  470. if (TransA == CblasConjTrans) transb = 3;
  471. #endif
  472. nrowa = args.m;
  473. if (transa & 1) nrowa = args.k;
  474. nrowb = args.k;
  475. if (transb & 1) nrowb = args.n;
  476. info = -1;
  477. if (args.ldc < args.m) info = 13;
  478. if (args.ldb < nrowb) info = 10;
  479. if (args.lda < nrowa) info = 8;
  480. if (args.k < 0) info = 5;
  481. if (args.n < 0) info = 4;
  482. if (args.m < 0) info = 3;
  483. if (transb < 0) info = 2;
  484. if (transa < 0) info = 1;
  485. }
  486. if (info >= 0) {
  487. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  488. return;
  489. }
  490. #endif
  491. #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  492. #if defined(DYNAMIC_ARCH)
  493. if (gotoblas->need_amxtile_permission &&
  494. openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
  495. return;
  496. }
  497. #endif
  498. #if !defined(DYNAMIC_ARCH) && defined(SAPPHIRERAPIDS)
  499. if (openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
  500. return;
  501. }
  502. #endif
  503. #endif // defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  504. if ((args.m == 0) || (args.n == 0)) return;
  505. #if 0
  506. fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n",
  507. args.m, args.n, args.k, args.lda, args.ldb, args.ldc);
  508. #endif
  509. #if defined(GEMM_GEMV_FORWARD) && !defined(GEMM3M) && !defined(COMPLEX) && (!defined(BFLOAT16) || defined(GEMM_GEMV_FORWARD_BF16))
  510. #if defined(ARCH_ARM64)
  511. // The gemv kernels in arm64/{gemv_n.S,gemv_n_sve.c,gemv_t.S,gemv_t_sve.c}
  512. // perform poorly in certain circumstances. We use the following boolean
  513. // variable along with the gemv argument values to avoid these inefficient
  514. // gemv cases, see github issue#4951.
  515. bool have_tuned_gemv = false;
  516. #else
  517. bool have_tuned_gemv = true;
  518. #endif
  519. // Check if we can convert GEMM -> GEMV
  520. if (args.k != 0) {
  521. if (args.n == 1) {
  522. blasint inc_x = 1;
  523. blasint inc_y = 1;
  524. // These were passed in as blasint, but the struct translates them to blaslong
  525. blasint m = args.m;
  526. blasint n = args.k;
  527. blasint lda = args.lda;
  528. // Create new transpose parameters
  529. char NT = 'N';
  530. if (transa & 1) {
  531. NT = 'T';
  532. m = args.k;
  533. n = args.m;
  534. }
  535. if (transb & 1) {
  536. inc_x = args.ldb;
  537. }
  538. bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N') || (NT == 'T' && inc_x == 1));
  539. if (is_efficient_gemv) {
  540. GEMV(&NT, &m, &n, args.alpha, args.a, &lda, args.b, &inc_x, args.beta, args.c, &inc_y);
  541. return;
  542. }
  543. }
  544. if (args.m == 1) {
  545. blasint inc_x = args.lda;
  546. blasint inc_y = args.ldc;
  547. // These were passed in as blasint, but the struct translates them to blaslong
  548. blasint m = args.k;
  549. blasint n = args.n;
  550. blasint ldb = args.ldb;
  551. // Create new transpose parameters
  552. char NT = 'T';
  553. if (transa & 1) {
  554. inc_x = 1;
  555. }
  556. if (transb & 1) {
  557. NT = 'N';
  558. m = args.n;
  559. n = args.k;
  560. }
  561. bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N' && inc_y == 1) || (NT == 'T' && inc_x == 1));
  562. if (is_efficient_gemv) {
  563. GEMV(&NT, &m, &n, args.alpha, args.b, &ldb, args.a, &inc_x, args.beta, args.c, &inc_y);
  564. return;
  565. }
  566. }
  567. }
  568. #endif
  569. IDEBUG_START;
  570. FUNCTION_PROFILE_START();
  571. #if USE_SMALL_MATRIX_OPT
  572. #if !defined(COMPLEX)
  573. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, *(FLOAT *)(args.alpha), *(FLOAT *)(args.beta))){
  574. if(*(FLOAT *)(args.beta) == 0.0){
  575. (GEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, args.c, args.ldc);
  576. }else{
  577. (GEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, *(FLOAT *)(args.beta), args.c, args.ldc);
  578. }
  579. return;
  580. }
  581. #else
  582. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, alpha[0], alpha[1], beta[0], beta[1])){
  583. if(beta[0] == 0.0 && beta[1] == 0.0){
  584. (ZGEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, args.c, args.ldc);
  585. }else{
  586. (ZGEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, beta[0], beta[1], args.c, args.ldc);
  587. }
  588. return;
  589. }
  590. #endif
  591. #endif
  592. buffer = (XFLOAT *)blas_memory_alloc(0);
  593. //For LOONGARCH64, applying an offset to the buffer is essential
  594. //for minimizing cache conflicts and optimizing performance.
  595. #if defined(ARCH_LOONGARCH64) && !defined(NO_AFFINITY)
  596. sa = (XFLOAT *)((BLASLONG)buffer + (WhereAmI() & 0xf) * GEMM_OFFSET_A);
  597. #else
  598. sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A);
  599. #endif
  600. sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
  601. #ifdef SMP
  602. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  603. mode |= (transa << BLAS_TRANSA_SHIFT);
  604. mode |= (transb << BLAS_TRANSB_SHIFT);
  605. #endif
  606. MNK = (double) args.m * (double) args.n * (double) args.k;
  607. args.nthreads = get_gemm_optimal_nthreads(MNK);
  608. args.common = NULL;
  609. if (args.nthreads == 1) {
  610. #endif
  611. (gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  612. #ifdef SMP
  613. } else {
  614. #ifndef USE_SIMPLE_THREADED_LEVEL3
  615. #ifndef NO_AFFINITY
  616. nodes = get_num_nodes();
  617. if ((nodes > 1) && get_node_equal()) {
  618. args.nthreads /= nodes;
  619. gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes);
  620. } else {
  621. #endif
  622. (gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  623. #else
  624. GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads);
  625. #endif
  626. #ifndef USE_SIMPLE_THREADED_LEVEL3
  627. #ifndef NO_AFFINITY
  628. }
  629. #endif
  630. #endif
  631. #endif
  632. #ifdef SMP
  633. }
  634. #endif
  635. blas_memory_free(buffer);
  636. FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k);
  637. IDEBUG_END;
  638. return;
  639. }