You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgemm_small_kernel_nn_skylakex.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /***************************************************************************
  2. Copyright (c) 2021, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #ifdef __NVCOMPILER
  28. #define NVCOMPVERS ( __NVCOMPILER_MAJOR__ * 100 + __NVCOMPILER_MINOR__ )
  29. #endif
  30. #if (( defined(__GNUC__) && __GNUC__ > 6 && defined(__AVX512CD__)) || (defined(__clang__) && __clang_major__ >= 9)) || (defined(__NVCOMPILER) && NVCOMPVERS >= 2203 )
  31. #include <immintrin.h>
  32. #include "common.h"
  33. #include <stdio.h>
  34. #include <memory.h>
  35. #define DECLARE_RESULT_512(M, N) __m512 result##M##N = _mm512_setzero_ps()
  36. #define LOAD_A_512(M, N) __m512 Aval##M = _mm512_loadu_ps(&A[lda * k + i + (M*16)])
  37. #define MASK_LOAD_A_512(M, N) __m512 Aval##M = _mm512_maskz_loadu_ps(mask, &A[lda * k + i + (M*16)])
  38. #define BROADCAST_LOAD_B_512(M, N) __m512 Bval##N = _mm512_broadcastss_ps(_mm_load_ss(&B[k + ldb * (j+N)]))
  39. #define MATMUL_512(M, N) result##M##N = _mm512_fmadd_ps(Aval##M, Bval##N, result##M##N)
  40. #if defined(B0)
  41. #define STORE_512(M, N) result##M##N = _mm512_mul_ps(result##M##N, alpha_512); \
  42. _mm512_storeu_ps(&C[(j+N)*ldc + i + (M*16)], result##M##N)
  43. #define MASK_STORE_512(M, N) result##M##N = _mm512_mul_ps(result##M##N, alpha_512); \
  44. _mm512_mask_storeu_ps(&C[(j+N)*ldc + i + (M*16)], mask, result##M##N)
  45. #else
  46. #define STORE_512(M, N) \
  47. result##M##N = _mm512_mul_ps(result##M##N, alpha_512); \
  48. asm("vfmadd231ps (%1), %2, %0": "+v"(result##M##N):"r"(&C[(j+N)*ldc + i + (M*16)]), "v"(beta_512)); \
  49. _mm512_storeu_ps(&C[(j+N)*ldc + i + (M*16)], result##M##N)
  50. #define MASK_STORE_512(M, N) \
  51. result##M##N = _mm512_mul_ps(result##M##N, alpha_512); \
  52. asm("vfmadd231ps (%1), %2, %0 %{%3%}": "+v"(result##M##N):"r"(&C[(j+N)*ldc + i + (M*16)]), "v"(beta_512), "Yk"(mask)); \
  53. _mm512_mask_storeu_ps(&C[(j+N)*ldc + i + (M*16)], mask, result##M##N)
  54. #endif
  55. #define LOAD_KA_512(M, N) __m512 Aval##M = _mm512_loadu_ps(&mbuf[(mi + M)*K + k]);
  56. #define LOAD_KB_512(M, N) __m512 Bval##N = _mm512_loadu_ps(&B[(j + N)*ldb + k])
  57. #define MASK_LOAD_KA_512(M, N) __m512 Aval##M = _mm512_maskz_loadu_ps(mask, &mbuf[(mi + M)*K + k])
  58. #define MASK_LOAD_KB_512(M, N) __m512 Bval##N = _mm512_maskz_loadu_ps(mask, &B[(j + N)*ldb + k])
  59. #define REDUCE_4(rr0, rr1, rr2, rr3) \
  60. __m512 r0, r1, r2, r3, t0, t1, t2, t3;\
  61. r0 = _mm512_unpacklo_ps(rr0, rr1); r1 = _mm512_unpackhi_ps(rr0, rr1); \
  62. r2 = _mm512_unpacklo_ps(rr2, rr3); r3 = _mm512_unpackhi_ps(rr2, rr3); \
  63. t0 = _mm512_shuffle_ps(r0, r2, _MM_SHUFFLE(1, 0, 1, 0)); t1 = _mm512_shuffle_ps(r0, r2, _MM_SHUFFLE(3, 2, 3, 2)); \
  64. t2 = _mm512_shuffle_ps(r1, r3, _MM_SHUFFLE(1, 0, 1, 0)); t3 = _mm512_shuffle_ps(r1, r3, _MM_SHUFFLE(3, 2, 3, 2)); \
  65. r0 = _mm512_add_ps(t0, t1); r1 = _mm512_add_ps(t2, t3); t0 = _mm512_add_ps(r0, r1); \
  66. __m128 s0, s1, s2, s3; \
  67. s0 = _mm512_extractf32x4_ps(t0, 0); s1 = _mm512_extractf32x4_ps(t0, 1); s2 = _mm512_extractf32x4_ps(t0, 2); s3 = _mm512_extractf32x4_ps(t0, 3); \
  68. s0 = _mm_maskz_add_ps(mask8, s0, s1); s2 = _mm_maskz_add_ps(mask8, s2, s3); s0 = _mm_maskz_add_ps(mask8, s0, s2); \
  69. s0 = _mm_maskz_mul_ps(mask8, alpha_128, s0);
  70. #define REDUCE_M4(N) REDUCE_4(result0##N, result1##N, result2##N, result3##N)
  71. #define REDUCE_N4(M) REDUCE_4(result##M##0, result##M##1, result##M##2, result##M##3)
  72. #if defined(B0)
  73. #define STORE_REDUCE(M, N) C[(j+N)*ldc + i + M] = alpha * _mm512_reduce_add_ps(result##M##N);
  74. #define STORE_REDUCE_M4(N) {\
  75. REDUCE_M4(N) \
  76. _mm_mask_storeu_ps(&C[(j + N)*ldc + i], mask8, s0); \
  77. }
  78. #define STORE_REDUCE_N4(M) {\
  79. REDUCE_N4(M) \
  80. _mm_i32scatter_ps(&C[j*ldc + i + M], vindex_n, s0, 4); \
  81. }
  82. #else
  83. #define STORE_REDUCE(M, N) C[(j+N)*ldc + i + M] = alpha * _mm512_reduce_add_ps(result##M##N) + beta * C[(j+N)*ldc + i + M];
  84. #define STORE_REDUCE_M4(N) {\
  85. REDUCE_M4(N) \
  86. asm("vfmadd231ps (%1), %2, %0": "+v"(s0):"r"(&C[(j + N)*ldc + i]), "v"(beta_128)); \
  87. _mm_mask_storeu_ps(&C[(j + N)*ldc + i], mask8, s0); \
  88. }
  89. #define STORE_REDUCE_N4(M) {\
  90. REDUCE_N4(M) \
  91. s1 = _mm_i32gather_ps(&C[j*ldc + i + M], vindex_n, 4); \
  92. s0 = _mm_fmadd_ps(s1, beta_128, s0); \
  93. _mm_i32scatter_ps(&C[j*ldc + i + M], vindex_n, s0, 4); \
  94. }
  95. #endif
  96. #if defined(B0)
  97. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT * C, BLASLONG ldc)
  98. #else
  99. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT beta, FLOAT * C, BLASLONG ldc)
  100. #endif
  101. {
  102. // column major
  103. BLASLONG i, j, k;
  104. BLASLONG m64 = M & ~63;
  105. BLASLONG m32 = M & ~31;
  106. BLASLONG m16 = M & ~15;
  107. BLASLONG m4 = M & ~3;
  108. BLASLONG m2 = M & ~1;
  109. BLASLONG n6 = N - (N % 6);
  110. BLASLONG n4 = N & ~3;
  111. BLASLONG n2 = N & ~1;
  112. __m512 alpha_512 = _mm512_broadcastss_ps(_mm_load_ss(&alpha));
  113. #if !defined(B0)
  114. __m512 beta_512 = _mm512_broadcastss_ps(_mm_load_ss(&beta));
  115. #endif
  116. for (i = 0; i < m64; i += 64) {
  117. for (j = 0; j < n4; j += 4) {
  118. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  119. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  120. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
  121. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
  122. for (k = 0; k < K; k++) {
  123. LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
  124. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  125. BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
  126. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  127. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  128. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  129. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  130. }
  131. STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
  132. STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
  133. STORE_512(0, 2); STORE_512(1, 2); STORE_512(2, 2); STORE_512(3, 2);
  134. STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3);
  135. }
  136. for (; j < n2; j += 2) {
  137. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  138. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  139. for (k = 0; k < K; k++) {
  140. LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
  141. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  142. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  143. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  144. }
  145. STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
  146. STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
  147. }
  148. for (; j < N; j++) {
  149. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  150. for (k = 0; k < K; k++) {
  151. LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
  152. BROADCAST_LOAD_B_512(x, 0);
  153. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  154. }
  155. STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
  156. }
  157. }
  158. for (; i < m32; i += 32) {
  159. for (j = 0; j < n6; j += 6) {
  160. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  161. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  162. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
  163. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
  164. DECLARE_RESULT_512(0, 4); DECLARE_RESULT_512(1, 4);
  165. DECLARE_RESULT_512(0, 5); DECLARE_RESULT_512(1, 5);
  166. for (k = 0; k < K; k++) {
  167. LOAD_A_512(0, x); LOAD_A_512(1, x);
  168. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  169. BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
  170. BROADCAST_LOAD_B_512(x, 4); BROADCAST_LOAD_B_512(x, 5);
  171. MATMUL_512(0, 0); MATMUL_512(1, 0);
  172. MATMUL_512(0, 1); MATMUL_512(1, 1);
  173. MATMUL_512(0, 2); MATMUL_512(1, 2);
  174. MATMUL_512(0, 3); MATMUL_512(1, 3);
  175. MATMUL_512(0, 4); MATMUL_512(1, 4);
  176. MATMUL_512(0, 5); MATMUL_512(1, 5);
  177. }
  178. STORE_512(0, 0); STORE_512(1, 0);
  179. STORE_512(0, 1); STORE_512(1, 1);
  180. STORE_512(0, 2); STORE_512(1, 2);
  181. STORE_512(0, 3); STORE_512(1, 3);
  182. STORE_512(0, 4); STORE_512(1, 4);
  183. STORE_512(0, 5); STORE_512(1, 5);
  184. }
  185. for (; j < n2; j += 2) {
  186. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  187. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  188. for (k = 0; k < K; k++) {
  189. LOAD_A_512(0, x); LOAD_A_512(1, x);
  190. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  191. MATMUL_512(0, 0); MATMUL_512(1, 0);
  192. MATMUL_512(0, 1); MATMUL_512(1, 1);
  193. }
  194. STORE_512(0, 0); STORE_512(1, 0);
  195. STORE_512(0, 1); STORE_512(1, 1);
  196. }
  197. for (; j < N; j++) {
  198. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  199. for (k = 0; k < K; k++) {
  200. LOAD_A_512(0, x); LOAD_A_512(1, x);
  201. BROADCAST_LOAD_B_512(x, 0);
  202. MATMUL_512(0, 0); MATMUL_512(1, 0);
  203. }
  204. STORE_512(0, 0); STORE_512(1, 0);
  205. }
  206. }
  207. for (; i < m16; i += 16) {
  208. for (j = 0; j < n6; j += 6) {
  209. DECLARE_RESULT_512(0, 0);
  210. DECLARE_RESULT_512(0, 1);
  211. DECLARE_RESULT_512(0, 2);
  212. DECLARE_RESULT_512(0, 3);
  213. DECLARE_RESULT_512(0, 4);
  214. DECLARE_RESULT_512(0, 5);
  215. for (k = 0; k < K; k++) {
  216. LOAD_A_512(0, x);
  217. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  218. BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
  219. BROADCAST_LOAD_B_512(x, 4); BROADCAST_LOAD_B_512(x, 5);
  220. MATMUL_512(0, 0);
  221. MATMUL_512(0, 1);
  222. MATMUL_512(0, 2);
  223. MATMUL_512(0, 3);
  224. MATMUL_512(0, 4);
  225. MATMUL_512(0, 5);
  226. }
  227. STORE_512(0, 0);
  228. STORE_512(0, 1);
  229. STORE_512(0, 2);
  230. STORE_512(0, 3);
  231. STORE_512(0, 4);
  232. STORE_512(0, 5);
  233. }
  234. for (; j < n2; j += 2) {
  235. DECLARE_RESULT_512(0, 0);
  236. DECLARE_RESULT_512(0, 1);
  237. for (k = 0; k < K; k++) {
  238. LOAD_A_512(0, x);
  239. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  240. MATMUL_512(0, 0);
  241. MATMUL_512(0, 1);
  242. }
  243. STORE_512(0, 0);
  244. STORE_512(0, 1);
  245. }
  246. for (; j < N; j++) {
  247. DECLARE_RESULT_512(0, 0);
  248. for (k = 0; k < K; k++) {
  249. LOAD_A_512(0, x);
  250. BROADCAST_LOAD_B_512(x, 0);
  251. MATMUL_512(0, 0);
  252. }
  253. STORE_512(0, 0);
  254. }
  255. }
  256. int mm = M - i;
  257. if (!mm) return 0;
  258. if (mm > 8 || K < 32) {
  259. register __mmask16 mask = (1UL << mm) - 1;
  260. for (j = 0; j < n6; j += 6) {
  261. DECLARE_RESULT_512(0, 0);
  262. DECLARE_RESULT_512(0, 1);
  263. DECLARE_RESULT_512(0, 2);
  264. DECLARE_RESULT_512(0, 3);
  265. DECLARE_RESULT_512(0, 4);
  266. DECLARE_RESULT_512(0, 5);
  267. for (k = 0; k < K; k++) {
  268. MASK_LOAD_A_512(0, x);
  269. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  270. BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
  271. BROADCAST_LOAD_B_512(x, 4); BROADCAST_LOAD_B_512(x, 5);
  272. MATMUL_512(0, 0);
  273. MATMUL_512(0, 1);
  274. MATMUL_512(0, 2);
  275. MATMUL_512(0, 3);
  276. MATMUL_512(0, 4);
  277. MATMUL_512(0, 5);
  278. }
  279. MASK_STORE_512(0, 0);
  280. MASK_STORE_512(0, 1);
  281. MASK_STORE_512(0, 2);
  282. MASK_STORE_512(0, 3);
  283. MASK_STORE_512(0, 4);
  284. MASK_STORE_512(0, 5);
  285. }
  286. for (; j < n2; j += 2) {
  287. DECLARE_RESULT_512(0, 0);
  288. DECLARE_RESULT_512(0, 1);
  289. for (k = 0; k < K; k++) {
  290. MASK_LOAD_A_512(0, x);
  291. BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
  292. MATMUL_512(0, 0);
  293. MATMUL_512(0, 1);
  294. }
  295. MASK_STORE_512(0, 0);
  296. MASK_STORE_512(0, 1);
  297. }
  298. for (; j < N; j++) {
  299. DECLARE_RESULT_512(0, 0);
  300. for (k = 0; k < K; k++) {
  301. MASK_LOAD_A_512(0, x);
  302. BROADCAST_LOAD_B_512(x, 0);
  303. MATMUL_512(0, 0);
  304. }
  305. MASK_STORE_512(0, 0);
  306. }
  307. } else {
  308. /* M => [1, 8]
  309. *
  310. * This kernel use dot-like style to calc a value - C(x, y):
  311. * C(x, y) = A(x, 0)*B(0, y) + A(x, 1)*B(1, y) +....+ A(x, K)*B(K, y)
  312. *
  313. * Alloc a buf to copy rest of A as row major,
  314. * so memory access from 0 to K is continuous for both A & B.
  315. *
  316. * Loading to zmm and FMA 16 of k at one loop,
  317. * finally reduce_add zmm to a single float result in C(x, y).
  318. *
  319. * Note: performance is bad when K is small.
  320. */
  321. FLOAT *mbuf = (FLOAT *) malloc(sizeof(FLOAT)*mm*K);
  322. __mmask8 mask8 = (1UL << mm) - 1;
  323. __mmask16 mask;
  324. BLASLONG k16 = K & ~15;
  325. BLASLONG k8 = K & ~7;
  326. for (k = 0; k < k8; k += 8) {
  327. __m256 r0, r1, r2, r3, r4, r5, r6, r7;
  328. __m256 t0, t1, t2, t3, t4, t5, t6, t7;
  329. r0 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(0 + k)]);
  330. r1 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(1 + k)]);
  331. r2 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(2 + k)]);
  332. r3 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(3 + k)]);
  333. r4 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(4 + k)]);
  334. r5 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(5 + k)]);
  335. r6 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(6 + k)]);
  336. r7 = _mm256_maskz_loadu_ps(mask8, &A[i + lda*(7 + k)]);
  337. t0 = _mm256_unpacklo_ps(r0, r1);
  338. t1 = _mm256_unpackhi_ps(r0, r1);
  339. t2 = _mm256_unpacklo_ps(r2, r3);
  340. t3 = _mm256_unpackhi_ps(r2, r3);
  341. t4 = _mm256_unpacklo_ps(r4, r5);
  342. t5 = _mm256_unpackhi_ps(r4, r5);
  343. t6 = _mm256_unpacklo_ps(r6, r7);
  344. t7 = _mm256_unpackhi_ps(r6, r7);
  345. r0 = _mm256_shuffle_ps(t0,t2,_MM_SHUFFLE(1,0,1,0));
  346. r1 = _mm256_shuffle_ps(t0,t2,_MM_SHUFFLE(3,2,3,2));
  347. r2 = _mm256_shuffle_ps(t1,t3,_MM_SHUFFLE(1,0,1,0));
  348. r3 = _mm256_shuffle_ps(t1,t3,_MM_SHUFFLE(3,2,3,2));
  349. r4 = _mm256_shuffle_ps(t4,t6,_MM_SHUFFLE(1,0,1,0));
  350. r5 = _mm256_shuffle_ps(t4,t6,_MM_SHUFFLE(3,2,3,2));
  351. r6 = _mm256_shuffle_ps(t5,t7,_MM_SHUFFLE(1,0,1,0));
  352. r7 = _mm256_shuffle_ps(t5,t7,_MM_SHUFFLE(3,2,3,2));
  353. t0 = _mm256_permute2f128_ps(r0, r4, 0x20);
  354. t1 = _mm256_permute2f128_ps(r1, r5, 0x20);
  355. t2 = _mm256_permute2f128_ps(r2, r6, 0x20);
  356. t3 = _mm256_permute2f128_ps(r3, r7, 0x20);
  357. t4 = _mm256_permute2f128_ps(r0, r4, 0x31);
  358. t5 = _mm256_permute2f128_ps(r1, r5, 0x31);
  359. t6 = _mm256_permute2f128_ps(r2, r6, 0x31);
  360. t7 = _mm256_permute2f128_ps(r3, r7, 0x31);
  361. switch (mm) {
  362. case 8: _mm256_storeu_ps(&mbuf[k + 7*K], t7);
  363. case 7: _mm256_storeu_ps(&mbuf[k + 6*K], t6);
  364. case 6: _mm256_storeu_ps(&mbuf[k + 5*K], t5);
  365. case 5: _mm256_storeu_ps(&mbuf[k + 4*K], t4);
  366. case 4: _mm256_storeu_ps(&mbuf[k + 3*K], t3);
  367. case 3: _mm256_storeu_ps(&mbuf[k + 2*K], t2);
  368. case 2: _mm256_storeu_ps(&mbuf[k + 1*K], t1);
  369. case 1: _mm256_storeu_ps(&mbuf[k + 0*K], t0);
  370. }
  371. }
  372. for (; k < K; k++) {
  373. for (int ii = 0; ii < mm; ii++) {
  374. mbuf[k + ii*K] = A[i + lda*k + ii];
  375. }
  376. }
  377. int mi = 0;
  378. mask8 = 0xff; // just use to avoid SSE instruction
  379. __m128 alpha_128 = _mm_broadcast_ss(&alpha);
  380. #if !defined(B0)
  381. __m128 beta_128 = _mm_broadcast_ss(&beta);
  382. #endif
  383. __m128i vindex_n = _mm_set_epi32(ldc*3, ldc*2, ldc, 0);
  384. for (; i < m4; i += 4, mi += 4) {
  385. for (j = 0; j < n4; j += 4) {
  386. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  387. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  388. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
  389. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
  390. for (k = 0; k < k16; k += 16) {
  391. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  392. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  393. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  394. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  395. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  396. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  397. }
  398. int remains = K - k;
  399. if (remains) {
  400. mask = (1UL << remains) - 1;
  401. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  402. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  403. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  404. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  405. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  406. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  407. }
  408. STORE_REDUCE_M4(0); STORE_REDUCE_M4(1); STORE_REDUCE_M4(2); STORE_REDUCE_M4(3);
  409. }
  410. for (; j < n2; j += 2) {
  411. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  412. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  413. for (k = 0; k < k16; k += 16) {
  414. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  415. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  416. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  417. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  418. }
  419. int remains = K - k;
  420. if (remains) {
  421. mask = (1UL << remains) - 1;
  422. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  423. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  424. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  425. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  426. }
  427. STORE_REDUCE_M4(0); STORE_REDUCE_M4(1);
  428. }
  429. for (; j < N; j += 1) {
  430. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  431. for (k = 0; k < k16; k += 16) {
  432. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  433. LOAD_KB_512(x, 0);
  434. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  435. }
  436. int remains = K - k;
  437. if (remains) {
  438. mask = (1UL << remains) - 1;
  439. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  440. MASK_LOAD_KB_512(x, 0);
  441. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  442. }
  443. STORE_REDUCE_M4(0);
  444. }
  445. }
  446. for (; i < m2; i += 2, mi += 2) {
  447. for (j = 0; j < n4; j += 4) {
  448. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  449. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  450. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
  451. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
  452. for (k = 0; k < k16; k += 16) {
  453. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  454. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  455. MATMUL_512(0, 0); MATMUL_512(1, 0);
  456. MATMUL_512(0, 1); MATMUL_512(1, 1);
  457. MATMUL_512(0, 2); MATMUL_512(1, 2);
  458. MATMUL_512(0, 3); MATMUL_512(1, 3);
  459. }
  460. int remains = K - k;
  461. if (remains) {
  462. mask = (1UL << remains) - 1;
  463. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  464. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  465. MATMUL_512(0, 0); MATMUL_512(1, 0);
  466. MATMUL_512(0, 1); MATMUL_512(1, 1);
  467. MATMUL_512(0, 2); MATMUL_512(1, 2);
  468. MATMUL_512(0, 3); MATMUL_512(1, 3);
  469. }
  470. STORE_REDUCE_N4(0); STORE_REDUCE_N4(1);
  471. }
  472. for (; j < n2; j += 2) {
  473. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  474. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  475. for (k = 0; k < k16; k += 16) {
  476. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  477. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  478. MATMUL_512(0, 0); MATMUL_512(1, 0);
  479. MATMUL_512(0, 1); MATMUL_512(1, 1);
  480. }
  481. int remains = K - k;
  482. if (remains) {
  483. mask = (1UL << remains) - 1;
  484. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  485. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  486. MATMUL_512(0, 0); MATMUL_512(1, 0);
  487. MATMUL_512(0, 1); MATMUL_512(1, 1);
  488. }
  489. STORE_REDUCE(0, 0); STORE_REDUCE(1, 0);
  490. STORE_REDUCE(0, 1); STORE_REDUCE(1, 1);
  491. }
  492. for (; j < N; j += 1) {
  493. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  494. for (k = 0; k < k16; k += 16) {
  495. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  496. LOAD_KB_512(x, 0);
  497. MATMUL_512(0, 0); MATMUL_512(1, 0);
  498. }
  499. int remains = K - k;
  500. if (remains) {
  501. mask = (1UL << remains) - 1;
  502. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  503. MASK_LOAD_KB_512(x, 0);
  504. MATMUL_512(0, 0); MATMUL_512(1, 0);
  505. }
  506. STORE_REDUCE(0, 0); STORE_REDUCE(1, 0);
  507. }
  508. }
  509. for (; i < M; i += 1, mi += 1) {
  510. for (j = 0; j < n4; j += 4) {
  511. DECLARE_RESULT_512(0, 0);
  512. DECLARE_RESULT_512(0, 1);
  513. DECLARE_RESULT_512(0, 2);
  514. DECLARE_RESULT_512(0, 3);
  515. for (k = 0; k < k16; k += 16) {
  516. LOAD_KA_512(0, x);
  517. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  518. MATMUL_512(0, 0);
  519. MATMUL_512(0, 1);
  520. MATMUL_512(0, 2);
  521. MATMUL_512(0, 3);
  522. }
  523. int remains = K - k;
  524. if (remains) {
  525. mask = (1UL << remains) - 1;
  526. MASK_LOAD_KA_512(0, x);
  527. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  528. MATMUL_512(0, 0);
  529. MATMUL_512(0, 1);
  530. MATMUL_512(0, 2);
  531. MATMUL_512(0, 3);
  532. }
  533. STORE_REDUCE_N4(0);
  534. }
  535. for (; j < n2; j += 2) {
  536. DECLARE_RESULT_512(0, 0);
  537. DECLARE_RESULT_512(0, 1);
  538. for (k = 0; k < k16; k += 16) {
  539. LOAD_KA_512(0, x);
  540. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  541. MATMUL_512(0, 0);
  542. MATMUL_512(0, 1);
  543. }
  544. int remains = K - k;
  545. if (remains) {
  546. mask = (1UL << remains) - 1;
  547. MASK_LOAD_KA_512(0, x);
  548. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  549. MATMUL_512(0, 0);
  550. MATMUL_512(0, 1);
  551. }
  552. STORE_REDUCE(0, 0);
  553. STORE_REDUCE(0, 1);
  554. }
  555. for (; j < N; j += 1) {
  556. DECLARE_RESULT_512(0, 0);
  557. for (k = 0; k < k16; k += 16) {
  558. LOAD_KA_512(0, x);
  559. LOAD_KB_512(x, 0);
  560. MATMUL_512(0, 0);
  561. }
  562. int remains = K - k;
  563. if (remains) {
  564. mask = (1UL << remains) - 1;
  565. MASK_LOAD_KA_512(0, x);
  566. MASK_LOAD_KB_512(x, 0);
  567. MATMUL_512(0, 0);
  568. }
  569. STORE_REDUCE(0, 0);
  570. }
  571. }
  572. free(mbuf);
  573. }
  574. return 0;
  575. }
  576. #else
  577. #include "../generic/gemm_small_matrix_kernel_nn.c"
  578. #endif