You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemm_small_kernel_tn_power10.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /***************************************************************************
  2. Copyright (c) 2021, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #include <altivec.h>
  29. typedef __vector unsigned char vec_t;
  30. #if !__has_builtin(__builtin_vsx_assemble_pair)
  31. #define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair
  32. #endif
  33. #if !defined(B0)
  34. #define SAVE_4x2_ACC(ACC, N, M) \
  35. __builtin_mma_disassemble_acc((void *)result, ACC); \
  36. rc0 = vec_xl(0, C+(N+0)*ldc+M); \
  37. rc0 = vec_mul(rc0, vbeta); \
  38. result[0] = vec_madd(result[0], valpha, rc0); \
  39. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  40. rc0 = vec_xl(0, C+(N+1)*ldc+M); \
  41. rc0 = vec_mul(rc0, vbeta); \
  42. result[1] = vec_madd(result[1], valpha, rc0); \
  43. vec_xst(result[1], 0, C+(N+1)*ldc+M); \
  44. rc0 = vec_xl(0, C+(N+2)*ldc+M); \
  45. rc0 = vec_mul(rc0, vbeta); \
  46. result[2] = vec_madd(result[2], valpha, rc0); \
  47. vec_xst(result[2], 0, C+(N+2)*ldc+M); \
  48. rc0 = vec_xl(0, C+(N+3)*ldc+M); \
  49. rc0 = vec_mul(rc0, vbeta); \
  50. result[3] = vec_madd(result[3], valpha, rc0); \
  51. vec_xst(result[3], 0, C+(N+3)*ldc+M);
  52. #define SAVE_4x1_ACC(ACC, N, M) \
  53. __builtin_mma_disassemble_acc((void *)result, ACC); \
  54. rc0 = vec_xl_len(C+(N+0)*ldc+M, 8); \
  55. rc0 = vec_mul(rc0, vbeta); \
  56. result[0] = vec_madd(result[0], valpha, rc0); \
  57. vec_xst_len(result[0], C+(N+0)*ldc+M, 8); \
  58. rc0 = vec_xl_len(C+(N+1)*ldc+M, 8); \
  59. rc0 = vec_mul(rc0, vbeta); \
  60. result[1] = vec_madd(result[1], valpha, rc0); \
  61. vec_xst_len(result[1], C+(N+1)*ldc+M, 8); \
  62. rc0 = vec_xl_len(C+(N+2)*ldc+M, 8); \
  63. rc0 = vec_mul(rc0, vbeta); \
  64. result[2] = vec_madd(result[2], valpha, rc0); \
  65. vec_xst_len(result[2], C+(N+2)*ldc+M, 8); \
  66. rc0 = vec_xl_len(C+(N+3)*ldc+M, 8); \
  67. rc0 = vec_mul(rc0, vbeta); \
  68. result[3] = vec_madd(result[3], valpha, rc0); \
  69. vec_xst_len(result[3], C+(N+3)*ldc+M, 8);
  70. #define SAVE_2x2_ACC(ACC, N, M) \
  71. __builtin_mma_disassemble_acc((void *)result, ACC); \
  72. rc0 = vec_xl(0, C+(N+0)*ldc+M); \
  73. rc0 = vec_mul(rc0, vbeta); \
  74. result[0] = vec_madd(result[0], valpha, rc0); \
  75. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  76. rc0 = vec_xl(0, C+(N+1)*ldc+M); \
  77. rc0 = vec_mul(rc0, vbeta); \
  78. result[1] = vec_madd(result[1], valpha, rc0); \
  79. vec_xst(result[1], 0, C+(N+1)*ldc+M);
  80. #define SAVE_2x1_ACC(ACC, N, M) \
  81. __builtin_mma_disassemble_acc((void *)result, ACC); \
  82. rc0 = vec_xl_len(C+(N+0)*ldc+M, 8); \
  83. rc0 = vec_mul(rc0, vbeta); \
  84. result[0] = vec_madd(result[0], valpha, rc0); \
  85. vec_xst_len(result[0], C+(N+0)*ldc+M, 8); \
  86. rc0 = vec_xl_len(C+(N+1)*ldc+M, 8); \
  87. rc0 = vec_mul(rc0, vbeta); \
  88. result[1] = vec_madd(result[1], valpha, rc0); \
  89. vec_xst_len(result[1], C+(N+1)*ldc+M, 8);
  90. #define SAVE_1x4_VSR(result, N, M) \
  91. rc0 = vec_xl(0, C+((N)*ldc)+M); \
  92. rc0 = vec_mul(rc0, vbeta); \
  93. result = vec_madd(result, valpha, rc0); \
  94. vec_xst(result, 0, C+((N)*ldc)+M);
  95. #else
  96. #define SAVE_4x2_ACC(ACC, N, M) \
  97. __builtin_mma_disassemble_acc((void *)result, ACC); \
  98. result[0] = vec_mul(result[0], valpha); \
  99. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  100. result[1] = vec_mul(result[1], valpha); \
  101. vec_xst(result[1], 0, C+(N+1)*ldc+M); \
  102. result[2] = vec_mul(result[2], valpha); \
  103. vec_xst(result[2], 0, C+(N+2)*ldc+M); \
  104. result[3] = vec_mul(result[3], valpha); \
  105. vec_xst(result[3], 0, C+(N+3)*ldc+M);
  106. #define SAVE_4x1_ACC(ACC, N, M) \
  107. __builtin_mma_disassemble_acc((void *)result, ACC); \
  108. result[0] = vec_mul(result[0], valpha); \
  109. vec_xst_len(result[0], C+(N+0)*ldc+M, 8); \
  110. result[1] = vec_mul(result[1], valpha); \
  111. vec_xst_len(result[1], C+(N+1)*ldc+M, 8); \
  112. result[2] = vec_mul(result[2], valpha); \
  113. vec_xst_len(result[2], C+(N+2)*ldc+M, 8); \
  114. result[3] = vec_mul(result[3], valpha); \
  115. vec_xst_len(result[3], C+(N+3)*ldc+M, 8);
  116. #define SAVE_2x2_ACC(ACC, N, M) \
  117. __builtin_mma_disassemble_acc((void *)result, ACC); \
  118. result[0] = vec_mul(result[0], valpha); \
  119. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  120. result[1] = vec_mul(result[1], valpha); \
  121. vec_xst(result[1], 0, C+(N+1)*ldc+M);
  122. #define SAVE_2x1_ACC(ACC, N, M) \
  123. __builtin_mma_disassemble_acc((void *)result, ACC); \
  124. result[0] = vec_mul(result[0], valpha); \
  125. vec_xst_len(result[0], C+(N+0)*ldc+M, 8); \
  126. result[1] = vec_mul(result[1], valpha); \
  127. vec_xst_len(result[1], C+(N+1)*ldc+M, 8);
  128. #define SAVE_1x4_VSR(result, N, M) \
  129. result = vec_mul(result, valpha); \
  130. vec_xst(result, 0, C+((N)*ldc)+M);
  131. #endif
  132. #define INIT_8ACCS() \
  133. __builtin_mma_xxsetaccz(&acc0); \
  134. __builtin_mma_xxsetaccz(&acc1); \
  135. __builtin_mma_xxsetaccz(&acc2); \
  136. __builtin_mma_xxsetaccz(&acc3); \
  137. __builtin_mma_xxsetaccz(&acc4); \
  138. __builtin_mma_xxsetaccz(&acc5); \
  139. __builtin_mma_xxsetaccz(&acc6); \
  140. __builtin_mma_xxsetaccz(&acc7);
  141. #define INIT_4ACCS() \
  142. __builtin_mma_xxsetaccz(&acc0); \
  143. __builtin_mma_xxsetaccz(&acc1); \
  144. __builtin_mma_xxsetaccz(&acc2); \
  145. __builtin_mma_xxsetaccz(&acc3);
  146. #define INIT_2ACCS() \
  147. __builtin_mma_xxsetaccz(&acc0); \
  148. __builtin_mma_xxsetaccz(&acc1);
  149. #define INIT_1ACC() __builtin_mma_xxsetaccz(&acc0);
  150. #if (defined(__GNUC__) && (__GNUC__ == 10 || (__GNUC__ == 11 && __GNUC_MINOR__ <= 2)))
  151. #if defined(_AIX)
  152. #define LOAD_PAIR(pair, v0, v1) \
  153. __builtin_vsx_assemble_pair(&pair, (vec_t)v0, (vec_t)v1);
  154. #else
  155. #define LOAD_PAIR(pair, v0, v1) \
  156. __builtin_vsx_assemble_pair(&pair, (vec_t)v1, (vec_t)v0);
  157. #endif
  158. #else
  159. #define LOAD_PAIR(pair, v0, v1) \
  160. __builtin_vsx_build_pair(&pair, (vec_t)v0, (vec_t)v1);
  161. #endif
  162. #define LOAD_AT_8x2(M, K) \
  163. ra0 = vec_xl(0, A+(M+0)*lda+K+0); \
  164. ra1 = vec_xl(0, A+(M+1)*lda+K+0); \
  165. t0 = vec_mergeh(ra0, ra1); \
  166. t1 = vec_mergel(ra0, ra1); \
  167. ra0 = t0; \
  168. ra1 = t1; \
  169. ra2 = vec_xl(0, A+(M+2)*lda+K+0); \
  170. ra3 = vec_xl(0, A+(M+3)*lda+K+0); \
  171. t0 = vec_mergeh(ra2, ra3); \
  172. t1 = vec_mergel(ra2, ra3); \
  173. ra2 = t0; \
  174. ra3 = t1; \
  175. ra4 = vec_xl(0, A+(M+4)*lda+K+0); \
  176. ra5 = vec_xl(0, A+(M+5)*lda+K+0); \
  177. t0 = vec_mergeh(ra4, ra5); \
  178. t1 = vec_mergel(ra4, ra5); \
  179. ra4 = t0; \
  180. ra5 = t1; \
  181. ra6 = vec_xl(0, A+(M+6)*lda+K+0); \
  182. ra7 = vec_xl(0, A+(M+7)*lda+K+0); \
  183. t0 = vec_mergeh(ra6, ra7); \
  184. t1 = vec_mergel(ra6, ra7); \
  185. ra6 = t0; \
  186. ra7 = t1;
  187. #define LOAD_AT_8x1(M, K) \
  188. ra0 = vec_xor(ra0, ra0); \
  189. ra0 = vec_insert(A[(M+0)*lda+K], ra0, 0); \
  190. ra0 = vec_insert(A[(M+1)*lda+K], ra0, 1); \
  191. ra1 = vec_xor(ra1, ra1); \
  192. ra1 = vec_insert(A[(M+2)*lda+K], ra1, 0); \
  193. ra1 = vec_insert(A[(M+3)*lda+K], ra1, 1); \
  194. ra2 = vec_xor(ra2, ra2); \
  195. ra2 = vec_insert(A[(M+4)*lda+K], ra2, 0); \
  196. ra2 = vec_insert(A[(M+5)*lda+K], ra2, 1); \
  197. ra3 = vec_xor(ra3, ra3); \
  198. ra3 = vec_insert(A[(M+6)*lda+K], ra3, 0); \
  199. ra3 = vec_insert(A[(M+7)*lda+K], ra3, 1); \
  200. #define LOAD_AT_4x2(M, K) \
  201. ra0 = vec_xl(0, A+(M+0)*lda+K+0); \
  202. ra1 = vec_xl(0, A+(M+1)*lda+K+0); \
  203. ra2 = vec_xl(0, A+(M+2)*lda+K+0); \
  204. ra3 = vec_xl(0, A+(M+3)*lda+K+0); \
  205. t0 = vec_mergeh(ra0, ra1); \
  206. t1 = vec_mergeh(ra2, ra3); \
  207. t2 = vec_mergel(ra0, ra1); \
  208. t3 = vec_mergel(ra2, ra3); \
  209. ra0 = t0; \
  210. ra1 = t2; \
  211. ra2 = t1; \
  212. ra3 = t3;
  213. #define LOAD_AT_4x1(M, K) \
  214. ra0 = vec_xor(ra0, ra0); \
  215. ra0 = vec_insert(A[(M+0)*lda+K], ra0, 0); \
  216. ra0 = vec_insert(A[(M+1)*lda+K], ra0, 1); \
  217. ra1 = vec_xor(ra1, ra1); \
  218. ra1 = vec_insert(A[(M+2)*lda+K], ra1, 0); \
  219. ra1 = vec_insert(A[(M+3)*lda+K], ra1, 1); \
  220. #define LOAD_AT_2x2(M, K) \
  221. ra0 = vec_xl(0, A+(M+0)*lda+K+0); \
  222. ra1 = vec_xl(0, A+(M+1)*lda+K+0); \
  223. t0 = vec_mergeh(ra0, ra1); \
  224. t1 = vec_mergel(ra0, ra1); \
  225. ra0 = t0; \
  226. ra1 = t1;
  227. #define LOAD_AT_2x1(M, K) \
  228. ra0 = vec_xor(ra0, ra0); \
  229. ra0 = vec_insert(A[(M+0)*lda+K], ra0, 0); \
  230. ra0 = vec_insert(A[(M+1)*lda+K], ra0, 1);
  231. #define LOAD_A_1x1(K, M) \
  232. ra0 = vec_splats(A[((M+0)*lda)+K+0]);
  233. #define LOAD_BTP_8x2(N, K) \
  234. rb0 = vec_xl(0, B+(N+0)*ldb+K+0); \
  235. rb1 = vec_xl(0, B+(N+1)*ldb+K+0); \
  236. rb2 = vec_xl(0, B+(N+2)*ldb+K+0); \
  237. rb3 = vec_xl(0, B+(N+3)*ldb+K+0); \
  238. t0 = vec_mergeh(rb0, rb1); \
  239. t1 = vec_mergeh(rb2, rb3); \
  240. LOAD_PAIR(pb0, t0, t1); \
  241. t0 = vec_mergel(rb0, rb1); \
  242. t1 = vec_mergel(rb2, rb3); \
  243. LOAD_PAIR(pb2, t0, t1); \
  244. rb4 = vec_xl(0, B+(N+4)*ldb+K+0); \
  245. rb5 = vec_xl(0, B+(N+5)*ldb+K+0); \
  246. rb6 = vec_xl(0, B+(N+6)*ldb+K+0); \
  247. rb7 = vec_xl(0, B+(N+7)*ldb+K+0); \
  248. t0 = vec_mergeh(rb4, rb5); \
  249. t1 = vec_mergeh(rb6, rb7); \
  250. LOAD_PAIR(pb1, t0, t1); \
  251. t0 = vec_mergel(rb4, rb5); \
  252. t1 = vec_mergel(rb6, rb7); \
  253. LOAD_PAIR(pb3, t0, t1);
  254. #define LOAD_BTP_8x1(N, K) \
  255. rb0 = vec_xor(rb0, rb0); \
  256. rb0 = vec_insert(B[(N+0)*ldb+K], rb0, 0); \
  257. rb0 = vec_insert(B[(N+1)*ldb+K], rb0, 1); \
  258. rb1 = vec_xor(rb1, rb1); \
  259. rb1 = vec_insert(B[(N+2)*ldb+K], rb1, 0); \
  260. rb1 = vec_insert(B[(N+3)*ldb+K], rb1, 1); \
  261. LOAD_PAIR(pb0, rb0, rb1); \
  262. rb0 = vec_xor(rb0, rb0); \
  263. rb0 = vec_insert(B[(N+4)*ldb+K], rb0, 0); \
  264. rb0 = vec_insert(B[(N+5)*ldb+K], rb0, 1); \
  265. rb1 = vec_xor(rb1, rb1); \
  266. rb1 = vec_insert(B[(N+6)*ldb+K], rb1, 0); \
  267. rb1 = vec_insert(B[(N+7)*ldb+K], rb1, 1); \
  268. LOAD_PAIR(pb1, rb0, rb1);
  269. #define LOAD_BTP_4x2(N, K) \
  270. rb0 = vec_xl(0, B+(N+0)*ldb+K+0); \
  271. rb1 = vec_xl(0, B+(N+1)*ldb+K+0); \
  272. rb2 = vec_xl(0, B+(N+2)*ldb+K+0); \
  273. rb3 = vec_xl(0, B+(N+3)*ldb+K+0); \
  274. t0 = vec_mergeh(rb0, rb1); \
  275. t1 = vec_mergeh(rb2, rb3); \
  276. LOAD_PAIR(pb0, t0, t1); \
  277. t0 = vec_mergel(rb0, rb1); \
  278. t1 = vec_mergel(rb2, rb3); \
  279. LOAD_PAIR(pb1, t0, t1);
  280. #define LOAD_BTP_4x1(N, K) \
  281. rb0 = vec_xor(rb0, rb0); \
  282. rb0 = vec_insert(B[(N+0)*ldb+K], rb0, 0); \
  283. rb0 = vec_insert(B[(N+1)*ldb+K], rb0, 1); \
  284. rb1 = vec_xor(rb1, rb1); \
  285. rb1 = vec_insert(B[(N+2)*ldb+K], rb1, 0); \
  286. rb1 = vec_insert(B[(N+3)*ldb+K], rb1, 1); \
  287. LOAD_PAIR(pb0, rb0, rb1);
  288. #define LOAD_BTP_2x2(N, K) \
  289. rb0 = vec_xl(0, B+(N+0)*ldb+K+0); \
  290. rb1 = vec_xl(0, B+(N+1)*ldb+K+0); \
  291. t0 = vec_mergeh(rb0, rb1); \
  292. __builtin_vsx_assemble_pair(&pb0, (vec_t)t0, (vec_t)t0); \
  293. t1 = vec_mergel(rb0, rb1); \
  294. __builtin_vsx_assemble_pair(&pb1, (vec_t)t1, (vec_t)t1);
  295. #define LOAD_BTP_2x1(N, K) \
  296. rb0 = vec_xor(rb0, rb0); \
  297. rb0 = vec_insert(B[(N+0)*ldb+K], rb0, 0); \
  298. rb0 = vec_insert(B[(N+1)*ldb+K], rb0, 1); \
  299. __builtin_vsx_assemble_pair(&pb0, (vec_t)rb0, (vec_t)rb0);
  300. #define LOAD_B_1x1(N, K) rb0 = vec_splats(B[((N)*ldb)+K]);
  301. #define KERNEL_MMA_8ACC(b0, b1, b2, b3, b4, b5, b6, b7, \
  302. a0, a1, a2, a3, a4, a5, a6, a7) \
  303. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  304. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1); \
  305. __builtin_mma_xvf64gerpp(&acc2, b2, (vec_t)a2); \
  306. __builtin_mma_xvf64gerpp(&acc3, b3, (vec_t)a3); \
  307. __builtin_mma_xvf64gerpp(&acc4, b4, (vec_t)a4); \
  308. __builtin_mma_xvf64gerpp(&acc5, b5, (vec_t)a5); \
  309. __builtin_mma_xvf64gerpp(&acc6, b6, (vec_t)a6); \
  310. __builtin_mma_xvf64gerpp(&acc7, b7, (vec_t)a7);
  311. #define KERNEL_MMA_4ACC(b0, b1, b2, b3, a0, a1, a2, a3) \
  312. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  313. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1); \
  314. __builtin_mma_xvf64gerpp(&acc2, b2, (vec_t)a2); \
  315. __builtin_mma_xvf64gerpp(&acc3, b3, (vec_t)a3);
  316. #define KERNEL_MMA_2ACC(b0, b1, a0, a1) \
  317. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  318. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1);
  319. #define KERNEL_MMA_1ACC(b0, a0) \
  320. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0);
  321. #define KERNEL_MMA_1ACC_(acc, b0, a0) \
  322. __builtin_mma_xvf64gerpp(&acc, b0, (vec_t)a0);
  323. #define KERNEL_VMADD_4VSR(a0, a1, a2, a3, b0, b1, b2, b3) \
  324. result = vec_madd(a0, b0, result); \
  325. result1 = vec_madd(a1, b1, result1); \
  326. result2 = vec_madd(a2, b2, result2); \
  327. result3 = vec_madd(a3, b3, result3);
  328. #define KERNEL_VMADD_2VSR(a0, a1, b0, b1) \
  329. result = vec_madd(a0, b0, result); \
  330. result1 = vec_madd(a1, b1, result1);
  331. #define KERNEL_VMADD_1VSR(a0, b0) \
  332. result = vec_madd(a0, b0, result);
  333. #ifdef B0
  334. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, IFLOAT * A, BLASLONG lda, FLOAT alpha, IFLOAT * B, BLASLONG ldb, FLOAT * C, BLASLONG ldc)
  335. #else
  336. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, IFLOAT * A, BLASLONG lda, FLOAT alpha, IFLOAT * B, BLASLONG ldb, FLOAT beta, FLOAT * C, BLASLONG ldc)
  337. #endif
  338. {
  339. BLASLONG m, n, k;
  340. BLASLONG m8 = M & ~7;
  341. BLASLONG m4 = M & ~3;
  342. BLASLONG m2 = M & ~1;
  343. BLASLONG n8 = N & ~7;
  344. BLASLONG n4 = N & ~3;
  345. BLASLONG n2 = N & ~1;
  346. BLASLONG k2 = K & ~1;
  347. vector double valpha = vec_splats(alpha);
  348. #if !defined(B0)
  349. vector double vbeta = vec_splats(beta);
  350. #endif
  351. for (m = 0; m < m8; m += 8) {
  352. for (n = 0; n < n8; n += 8) {
  353. __vector_quad acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;
  354. INIT_8ACCS();
  355. register vector double ra0, ra1, ra2, ra3, ra4, ra5, ra6, ra7;
  356. register vector double rb0, rb1, rb2, rb3, rb4, rb5, rb6, rb7;
  357. register vector double t0, t1;
  358. __vector_pair pb0, pb1, pb2, pb3;
  359. for (k = 0; k < k2; k += 2) {
  360. LOAD_AT_8x2(m, k);
  361. LOAD_BTP_8x2(n, k);
  362. KERNEL_MMA_8ACC(pb0, pb0, pb0, pb0, pb1, pb1, pb1, pb1,
  363. ra0, ra2, ra4, ra6, ra0, ra2, ra4, ra6);
  364. KERNEL_MMA_8ACC(pb2, pb2, pb2, pb2, pb3, pb3, pb3, pb3,
  365. ra1, ra3, ra5, ra7, ra1, ra3, ra5, ra7);
  366. }
  367. // workaround to avoid register spilling
  368. for (; k < K; k++) {
  369. LOAD_AT_4x1(m, k);
  370. LOAD_BTP_4x1(n, k);
  371. KERNEL_MMA_1ACC_(acc0, pb0, ra0);
  372. KERNEL_MMA_1ACC_(acc1, pb0, ra1);
  373. LOAD_AT_4x1(m+4, k);
  374. KERNEL_MMA_1ACC_(acc2, pb0, ra0);
  375. KERNEL_MMA_1ACC_(acc3, pb0, ra1);
  376. LOAD_AT_4x1(m, k);
  377. LOAD_BTP_4x1(n+4, k);
  378. KERNEL_MMA_1ACC_(acc4, pb0, ra0);
  379. KERNEL_MMA_1ACC_(acc5, pb0, ra1);
  380. LOAD_AT_4x1(m+4, k);
  381. KERNEL_MMA_1ACC_(acc6, pb0, ra0);
  382. KERNEL_MMA_1ACC_(acc7, pb0, ra1);
  383. }
  384. #if !defined(B0)
  385. register vector double rc0;
  386. #endif
  387. vector double result[4];
  388. SAVE_4x2_ACC(&acc0, n+0, m+0);
  389. SAVE_4x2_ACC(&acc2, n+0, m+4);
  390. SAVE_4x2_ACC(&acc4, n+4, m+0);
  391. SAVE_4x2_ACC(&acc6, n+4, m+4);
  392. SAVE_4x2_ACC(&acc1, n+0, m+2);
  393. SAVE_4x2_ACC(&acc3, n+0, m+6);
  394. SAVE_4x2_ACC(&acc5, n+4, m+2);
  395. SAVE_4x2_ACC(&acc7, n+4, m+6);
  396. }
  397. for (; n < n4; n += 4) {
  398. __vector_quad acc0, acc1, acc2, acc3;
  399. INIT_4ACCS();
  400. register vector double ra0, ra1, ra2, ra3, ra4, ra5, ra6, ra7;
  401. register vector double rb0, rb1, rb2, rb3;
  402. register vector double t0, t1;
  403. __vector_pair pb0, pb1;
  404. for (k = 0; k < k2; k += 2) {
  405. LOAD_AT_8x2(m, k);
  406. LOAD_BTP_4x2(n, k);
  407. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra2, ra4, ra6);
  408. KERNEL_MMA_4ACC(pb1, pb1, pb1, pb1, ra1, ra3, ra5, ra7);
  409. }
  410. for (; k < K; k++) {
  411. LOAD_AT_8x1(m, k);
  412. LOAD_BTP_4x1(n, k);
  413. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra1, ra2, ra3);
  414. }
  415. #if !defined(B0)
  416. register vector double rc0;
  417. #endif
  418. vector double result[4];
  419. SAVE_4x2_ACC(&acc0, n+0, m+0);
  420. SAVE_4x2_ACC(&acc2, n+0, m+4);
  421. SAVE_4x2_ACC(&acc1, n+0, m+2);
  422. SAVE_4x2_ACC(&acc3, n+0, m+6);
  423. }
  424. for (; n < n2; n += 2) {
  425. __vector_quad acc0, acc1, acc2, acc3;
  426. INIT_4ACCS();
  427. register vector double ra0, ra1, ra2, ra3, ra4, ra5, ra6, ra7;
  428. register vector double rb0, rb1;
  429. register vector double t0, t1;
  430. __vector_pair pb0, pb1;
  431. for (k = 0; k < k2; k += 2) {
  432. LOAD_AT_8x2(m, k);
  433. LOAD_BTP_2x2(n, k);
  434. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra2, ra4, ra6);
  435. KERNEL_MMA_4ACC(pb1, pb1, pb1, pb1, ra1, ra3, ra5, ra7);
  436. }
  437. for (; k < K; k++) {
  438. LOAD_AT_8x1(m, k);
  439. LOAD_BTP_2x1(n, k);
  440. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra1, ra2, ra3);
  441. }
  442. #if !defined(B0)
  443. register vector double rc0;
  444. #endif
  445. vector double result[4];
  446. SAVE_2x2_ACC(&acc0, n+0, m+0);
  447. SAVE_2x2_ACC(&acc2, n+0, m+4);
  448. SAVE_2x2_ACC(&acc1, n+0, m+2);
  449. SAVE_2x2_ACC(&acc3, n+0, m+6);
  450. }
  451. for (; n < N; n++) {
  452. register vector double result = ((vector double){0.,0.});
  453. register vector double result1 = ((vector double){0.,0.});
  454. register vector double result2 = ((vector double){0.,0.});
  455. register vector double result3 = ((vector double){0.,0.});
  456. register vector double ra0, ra1, ra2, ra3;
  457. register vector double rb0;
  458. for (k = 0; k < K; k++) {
  459. LOAD_AT_8x1(m, k);
  460. LOAD_B_1x1(n, k);
  461. KERNEL_VMADD_4VSR(ra0, ra1, ra2, ra3, rb0, rb0, rb0, rb0);
  462. }
  463. #if !defined(B0)
  464. register vector double rc0;
  465. #endif
  466. SAVE_1x4_VSR(result, n, m+0);
  467. SAVE_1x4_VSR(result1, n, m+2);
  468. SAVE_1x4_VSR(result2, n, m+4);
  469. SAVE_1x4_VSR(result3, n, m+6);
  470. }
  471. }
  472. for (; m < m4; m += 4) {
  473. for (n = 0; n < n8; n += 8) {
  474. __vector_quad acc0, acc1, acc2, acc3;
  475. INIT_4ACCS();
  476. register vector double ra0, ra1, ra2, ra3;
  477. register vector double rb0, rb1, rb2, rb3, rb4, rb5, rb6, rb7;
  478. register vector double t0, t1, t2, t3;
  479. __vector_pair pb0, pb1, pb2, pb3;
  480. for (k = 0; k < k2; k += 2) {
  481. LOAD_AT_4x2(m, k);
  482. LOAD_BTP_8x2(n, k);
  483. KERNEL_MMA_4ACC(pb0, pb0, pb1, pb1, ra0, ra2, ra0, ra2);
  484. KERNEL_MMA_4ACC(pb2, pb2, pb3, pb3, ra1, ra3, ra1, ra3);
  485. }
  486. for (; k < K; k++) {
  487. LOAD_AT_4x1(m, k);
  488. LOAD_BTP_8x1(n, k);
  489. KERNEL_MMA_4ACC(pb0, pb0, pb1, pb1, ra0, ra1, ra0, ra1);
  490. }
  491. #if !defined(B0)
  492. register vector double rc0;
  493. #endif
  494. vector double result[4];
  495. SAVE_4x2_ACC(&acc0, n+0, m+0);
  496. SAVE_4x2_ACC(&acc1, n+0, m+2);
  497. SAVE_4x2_ACC(&acc2, n+4, m+0);
  498. SAVE_4x2_ACC(&acc3, n+4, m+2);
  499. }
  500. for (; n < n4; n += 4) {
  501. __vector_quad acc0, acc1;
  502. INIT_2ACCS();
  503. register vector double ra0, ra1, ra2, ra3;
  504. register vector double rb0, rb1, rb2, rb3;
  505. register vector double t0, t1, t2, t3;
  506. __vector_pair pb0, pb1;
  507. for (k = 0; k < k2; k += 2) {
  508. LOAD_AT_4x2(m, k);
  509. LOAD_BTP_4x2(n, k);
  510. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra2);
  511. KERNEL_MMA_2ACC(pb1, pb1, ra1, ra3);
  512. }
  513. for (; k < K; k++) {
  514. LOAD_AT_4x1(m, k);
  515. LOAD_BTP_4x1(n, k);
  516. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra1);
  517. }
  518. #if !defined(B0)
  519. register vector double rc0;
  520. #endif
  521. vector double result[4];
  522. SAVE_4x2_ACC(&acc0, n+0, m+0);
  523. SAVE_4x2_ACC(&acc1, n+0, m+2);
  524. }
  525. for (; n < n2; n += 2) {
  526. __vector_quad acc0, acc1;
  527. INIT_2ACCS();
  528. register vector double ra0, ra1, ra2, ra3;
  529. register vector double rb0, rb1;
  530. register vector double t0, t1, t2, t3;
  531. __vector_pair pb0, pb1;
  532. for (k = 0; k < k2; k += 2) {
  533. LOAD_AT_4x2(m, k);
  534. LOAD_BTP_2x2(n, k);
  535. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra2);
  536. KERNEL_MMA_2ACC(pb1, pb1, ra1, ra3);
  537. }
  538. for (; k < K; k++) {
  539. LOAD_AT_4x1(m, k);
  540. LOAD_BTP_2x1(n, k);
  541. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra1);
  542. }
  543. #if !defined(B0)
  544. register vector double rc0;
  545. #endif
  546. vector double result[4];
  547. SAVE_2x2_ACC(&acc0, n+0, m+0);
  548. SAVE_2x2_ACC(&acc1, n+0, m+2);
  549. }
  550. for (; n < N; n++) {
  551. register vector double result = ((vector double){0.,0.});
  552. register vector double result1 = ((vector double){0.,0.});
  553. register vector double ra0, ra1;
  554. register vector double rb0;
  555. for (k = 0; k < K; k++) {
  556. LOAD_AT_4x1(m, k);
  557. LOAD_B_1x1(n, k);
  558. KERNEL_VMADD_2VSR(ra0, ra1, rb0, rb0);
  559. }
  560. #if !defined(B0)
  561. register vector double rc0;
  562. #endif
  563. SAVE_1x4_VSR(result, n, m+0);
  564. SAVE_1x4_VSR(result1, n, m+2);
  565. }
  566. }
  567. for (; m < m2; m += 2) {
  568. for (n = 0; n < n8; n += 8) {
  569. __vector_quad acc0, acc1;
  570. INIT_2ACCS();
  571. register vector double ra0, ra1;
  572. register vector double rb0, rb1, rb2, rb3, rb4, rb5, rb6, rb7;
  573. register vector double t0, t1;
  574. __vector_pair pb0, pb1, pb2, pb3;
  575. for (k = 0; k < k2; k += 2) {
  576. LOAD_AT_2x2(m, k);
  577. LOAD_BTP_8x2(n, k);
  578. KERNEL_MMA_2ACC(pb0, pb1, ra0, ra0);
  579. KERNEL_MMA_2ACC(pb2, pb3, ra1, ra1);
  580. }
  581. for (; k < K; k++) {
  582. LOAD_AT_2x1(m, k);
  583. LOAD_BTP_8x1(n, k);
  584. KERNEL_MMA_2ACC(pb0, pb1, ra0, ra0);
  585. }
  586. #if !defined(B0)
  587. register vector double rc0;
  588. #endif
  589. vector double result[4];
  590. SAVE_4x2_ACC(&acc0, n+0, m+0);
  591. SAVE_4x2_ACC(&acc1, n+4, m+0);
  592. }
  593. for (; n < n4; n += 4) {
  594. __vector_quad acc0;
  595. INIT_1ACC();
  596. register vector double ra0, ra1;
  597. register vector double rb0, rb1, rb2, rb3;
  598. register vector double t0, t1;
  599. __vector_pair pb0, pb1;
  600. for (k = 0; k < k2; k += 2) {
  601. LOAD_AT_2x2(m, k);
  602. LOAD_BTP_4x2(n, k);
  603. KERNEL_MMA_1ACC(pb0, ra0);
  604. KERNEL_MMA_1ACC(pb1, ra1);
  605. }
  606. for (; k < K; k++) {
  607. LOAD_AT_2x1(m, k);
  608. LOAD_BTP_4x1(n, k);
  609. KERNEL_MMA_1ACC(pb0, ra0);
  610. }
  611. #if !defined(B0)
  612. register vector double rc0;
  613. #endif
  614. vector double result[4];
  615. SAVE_4x2_ACC(&acc0, n, m);
  616. }
  617. for (; n < n2; n += 2) {
  618. __vector_quad acc0;
  619. INIT_1ACC();
  620. register vector double ra0, ra1;
  621. register vector double rb0, rb1;
  622. register vector double t0, t1;
  623. __vector_pair pb0, pb1;
  624. for (k = 0; k < k2; k += 2) {
  625. LOAD_AT_2x2(m, k);
  626. LOAD_BTP_2x2(n, k);
  627. KERNEL_MMA_1ACC(pb0, ra0);
  628. KERNEL_MMA_1ACC(pb1, ra1);
  629. }
  630. for (; k < K; k++) {
  631. LOAD_AT_2x1(m, k);
  632. LOAD_BTP_2x1(n, k);
  633. KERNEL_MMA_1ACC(pb0, ra0);
  634. }
  635. #if !defined(B0)
  636. register vector double rc0;
  637. #endif
  638. vector double result[4];
  639. SAVE_2x2_ACC(&acc0, n, m);
  640. }
  641. for (; n < N; n++) {
  642. register vector double result = ((vector double){0.,0.});
  643. register vector double ra0, ra1;
  644. register vector double rb0;
  645. for (k = 0; k < K; k++) {
  646. LOAD_AT_4x1(m, k);
  647. LOAD_B_1x1(n, k);
  648. KERNEL_VMADD_1VSR(ra0, rb0);
  649. }
  650. #if !defined(B0)
  651. register vector double rc0;
  652. #endif
  653. SAVE_1x4_VSR(result, n, m+0);
  654. }
  655. }
  656. for (; m < M; m++) {
  657. for (n = 0; n < n8; n += 8) {
  658. __vector_quad acc0, acc1;
  659. INIT_2ACCS();
  660. register vector double ra0;
  661. register vector double rb0, rb1, rb2, rb3, rb4, rb5, rb6, rb7;
  662. register vector double t0, t1;
  663. __vector_pair pb0, pb1, pb2, pb3;
  664. for (k = 0; k < k2; k += 2) {
  665. LOAD_A_1x1(k, m);
  666. LOAD_BTP_8x2(n, k);
  667. KERNEL_MMA_2ACC(pb0, pb1, ra0, ra0);
  668. LOAD_A_1x1(k+1, m);
  669. KERNEL_MMA_2ACC(pb2, pb3, ra0, ra0);
  670. }
  671. for (; k < K; k++) {
  672. LOAD_A_1x1(k, m);
  673. LOAD_BTP_8x1(n, k);
  674. KERNEL_MMA_2ACC(pb0, pb1, ra0, ra0);
  675. }
  676. #if !defined(B0)
  677. register vector double rc0;
  678. #endif
  679. vector double result[4];
  680. SAVE_4x1_ACC(&acc0, n+0, m+0);
  681. SAVE_4x1_ACC(&acc1, n+4, m+0);
  682. }
  683. for (; n < n4; n += 4) {
  684. __vector_quad acc0;
  685. INIT_1ACC();
  686. register vector double ra0;
  687. register vector double rb0, rb1, rb2, rb3;
  688. register vector double t0, t1;
  689. __vector_pair pb0, pb1;
  690. for (k = 0; k < k2; k += 2) {
  691. LOAD_A_1x1(k, m);
  692. LOAD_BTP_4x2(n, k);
  693. KERNEL_MMA_1ACC(pb0, ra0);
  694. LOAD_A_1x1(k+1, m);
  695. KERNEL_MMA_1ACC(pb1, ra0);
  696. }
  697. for (; k < K; k++) {
  698. LOAD_A_1x1(k, m);
  699. LOAD_BTP_4x1(n, k);
  700. KERNEL_MMA_1ACC(pb0, ra0);
  701. }
  702. #if !defined(B0)
  703. register vector double rc0;
  704. #endif
  705. vector double result[4];
  706. SAVE_4x1_ACC(&acc0, n, m);
  707. }
  708. for (; n < n2; n += 2) {
  709. __vector_quad acc0;
  710. INIT_1ACC();
  711. register vector double ra0;
  712. register vector double rb0, rb1;
  713. register vector double t0, t1;
  714. __vector_pair pb0, pb1;
  715. for (k = 0; k < k2; k += 2) {
  716. LOAD_A_1x1(k, m);
  717. LOAD_BTP_2x2(n, k);
  718. KERNEL_MMA_1ACC(pb0, ra0);
  719. LOAD_A_1x1(k+1, m);
  720. KERNEL_MMA_1ACC(pb1, ra0);
  721. }
  722. for (; k < K; k++) {
  723. LOAD_A_1x1(k, m);
  724. LOAD_BTP_2x1(n, k);
  725. KERNEL_MMA_1ACC(pb0, ra0);
  726. }
  727. #if !defined(B0)
  728. register vector double rc0;
  729. #endif
  730. vector double result[4];
  731. SAVE_2x1_ACC(&acc0, n+0, m+0);
  732. }
  733. for (; n < N; n++) {
  734. FLOAT result = 0.0;
  735. for (k = 0; k < K; k++) {
  736. result += A[m*lda+k] * B[n*ldb+k];
  737. }
  738. result = result * alpha;
  739. #if !defined(B0)
  740. C[n*ldc+m] = (C[n*ldc+m] * beta) + result;
  741. #else
  742. C[n*ldc+m] = result;
  743. #endif
  744. }
  745. }
  746. return 0;
  747. }