You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgetrf.f 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. *> \brief \b CGETRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGETRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * INTEGER IPIV( * )
  28. * COMPLEX A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CGETRF computes an LU factorization of a general M-by-N matrix A
  38. *> using partial pivoting with row interchanges.
  39. *>
  40. *> The factorization has the form
  41. *> A = P * L * U
  42. *> where P is a permutation matrix, L is lower triangular with unit
  43. *> diagonal elements (lower trapezoidal if m > n), and U is upper
  44. *> triangular (upper trapezoidal if m < n).
  45. *>
  46. *> This is the right-looking Level 3 BLAS version of the algorithm.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A. M >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> On entry, the M-by-N matrix to be factored.
  68. *> On exit, the factors L and U from the factorization
  69. *> A = P*L*U; the unit diagonal elements of L are not stored.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDA
  73. *> \verbatim
  74. *> LDA is INTEGER
  75. *> The leading dimension of the array A. LDA >= max(1,M).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (min(M,N))
  81. *> The pivot indices; for 1 <= i <= min(M,N), row i of the
  82. *> matrix was interchanged with row IPIV(i).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] INFO
  86. *> \verbatim
  87. *> INFO is INTEGER
  88. *> = 0: successful exit
  89. *> < 0: if INFO = -i, the i-th argument had an illegal value
  90. *> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
  91. *> has been completed, but the factor U is exactly
  92. *> singular, and division by zero will occur if it is used
  93. *> to solve a system of equations.
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup complexGEcomputational
  107. *
  108. * =====================================================================
  109. SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
  110. *
  111. * -- LAPACK computational routine (version 3.7.0) --
  112. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  113. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  114. * December 2016
  115. *
  116. * .. Scalar Arguments ..
  117. INTEGER INFO, LDA, M, N
  118. * ..
  119. * .. Array Arguments ..
  120. INTEGER IPIV( * )
  121. COMPLEX A( LDA, * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Parameters ..
  127. COMPLEX ONE
  128. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  129. * ..
  130. * .. Local Scalars ..
  131. INTEGER I, IINFO, J, JB, NB
  132. * ..
  133. * .. External Subroutines ..
  134. EXTERNAL CGEMM, CGETRF2, CLASWP, CTRSM, XERBLA
  135. * ..
  136. * .. External Functions ..
  137. INTEGER ILAENV
  138. EXTERNAL ILAENV
  139. * ..
  140. * .. Intrinsic Functions ..
  141. INTRINSIC MAX, MIN
  142. * ..
  143. * .. Executable Statements ..
  144. *
  145. * Test the input parameters.
  146. *
  147. INFO = 0
  148. IF( M.LT.0 ) THEN
  149. INFO = -1
  150. ELSE IF( N.LT.0 ) THEN
  151. INFO = -2
  152. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  153. INFO = -4
  154. END IF
  155. IF( INFO.NE.0 ) THEN
  156. CALL XERBLA( 'CGETRF', -INFO )
  157. RETURN
  158. END IF
  159. *
  160. * Quick return if possible
  161. *
  162. IF( M.EQ.0 .OR. N.EQ.0 )
  163. $ RETURN
  164. *
  165. * Determine the block size for this environment.
  166. *
  167. NB = ILAENV( 1, 'CGETRF', ' ', M, N, -1, -1 )
  168. IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
  169. *
  170. * Use unblocked code.
  171. *
  172. CALL CGETRF2( M, N, A, LDA, IPIV, INFO )
  173. ELSE
  174. *
  175. * Use blocked code.
  176. *
  177. DO 20 J = 1, MIN( M, N ), NB
  178. JB = MIN( MIN( M, N )-J+1, NB )
  179. *
  180. * Factor diagonal and subdiagonal blocks and test for exact
  181. * singularity.
  182. *
  183. CALL CGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
  184. *
  185. * Adjust INFO and the pivot indices.
  186. *
  187. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  188. $ INFO = IINFO + J - 1
  189. DO 10 I = J, MIN( M, J+JB-1 )
  190. IPIV( I ) = J - 1 + IPIV( I )
  191. 10 CONTINUE
  192. *
  193. * Apply interchanges to columns 1:J-1.
  194. *
  195. CALL CLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
  196. *
  197. IF( J+JB.LE.N ) THEN
  198. *
  199. * Apply interchanges to columns J+JB:N.
  200. *
  201. CALL CLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
  202. $ IPIV, 1 )
  203. *
  204. * Compute block row of U.
  205. *
  206. CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
  207. $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
  208. $ LDA )
  209. IF( J+JB.LE.M ) THEN
  210. *
  211. * Update trailing submatrix.
  212. *
  213. CALL CGEMM( 'No transpose', 'No transpose', M-J-JB+1,
  214. $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
  215. $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
  216. $ LDA )
  217. END IF
  218. END IF
  219. 20 CONTINUE
  220. END IF
  221. RETURN
  222. *
  223. * End of CGETRF
  224. *
  225. END