You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sdrvls.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. *> \brief \b SDRVLS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
  12. * NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
  13. * COPYB, C, S, COPYS, WORK, IWORK, NOUT )
  14. *
  15. * .. Scalar Arguments ..
  16. * LOGICAL TSTERR
  17. * INTEGER NM, NN, NNB, NNS, NOUT
  18. * REAL THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
  23. * $ NVAL( * ), NXVAL( * )
  24. * REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
  25. * $ COPYS( * ), S( * ), WORK( * )
  26. * ..
  27. *
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> SDRVLS tests the least squares driver routines SGELS, SGELSS, SGELSX,
  35. *> SGELSY and SGELSD.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] DOTYPE
  42. *> \verbatim
  43. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  44. *> The matrix types to be used for testing. Matrices of type j
  45. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  46. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  47. *> The matrix of type j is generated as follows:
  48. *> j=1: A = U*D*V where U and V are random orthogonal matrices
  49. *> and D has random entries (> 0.1) taken from a uniform
  50. *> distribution (0,1). A is full rank.
  51. *> j=2: The same of 1, but A is scaled up.
  52. *> j=3: The same of 1, but A is scaled down.
  53. *> j=4: A = U*D*V where U and V are random orthogonal matrices
  54. *> and D has 3*min(M,N)/4 random entries (> 0.1) taken
  55. *> from a uniform distribution (0,1) and the remaining
  56. *> entries set to 0. A is rank-deficient.
  57. *> j=5: The same of 4, but A is scaled up.
  58. *> j=6: The same of 5, but A is scaled down.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NM
  62. *> \verbatim
  63. *> NM is INTEGER
  64. *> The number of values of M contained in the vector MVAL.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] MVAL
  68. *> \verbatim
  69. *> MVAL is INTEGER array, dimension (NM)
  70. *> The values of the matrix row dimension M.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NN
  74. *> \verbatim
  75. *> NN is INTEGER
  76. *> The number of values of N contained in the vector NVAL.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] NVAL
  80. *> \verbatim
  81. *> NVAL is INTEGER array, dimension (NN)
  82. *> The values of the matrix column dimension N.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] NNS
  86. *> \verbatim
  87. *> NNS is INTEGER
  88. *> The number of values of NRHS contained in the vector NSVAL.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] NSVAL
  92. *> \verbatim
  93. *> NSVAL is INTEGER array, dimension (NNS)
  94. *> The values of the number of right hand sides NRHS.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] NNB
  98. *> \verbatim
  99. *> NNB is INTEGER
  100. *> The number of values of NB and NX contained in the
  101. *> vectors NBVAL and NXVAL. The blocking parameters are used
  102. *> in pairs (NB,NX).
  103. *> \endverbatim
  104. *>
  105. *> \param[in] NBVAL
  106. *> \verbatim
  107. *> NBVAL is INTEGER array, dimension (NNB)
  108. *> The values of the blocksize NB.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] NXVAL
  112. *> \verbatim
  113. *> NXVAL is INTEGER array, dimension (NNB)
  114. *> The values of the crossover point NX.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] THRESH
  118. *> \verbatim
  119. *> THRESH is REAL
  120. *> The threshold value for the test ratios. A result is
  121. *> included in the output file if RESULT >= THRESH. To have
  122. *> every test ratio printed, use THRESH = 0.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] TSTERR
  126. *> \verbatim
  127. *> TSTERR is LOGICAL
  128. *> Flag that indicates whether error exits are to be tested.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] A
  132. *> \verbatim
  133. *> A is REAL array, dimension (MMAX*NMAX)
  134. *> where MMAX is the maximum value of M in MVAL and NMAX is the
  135. *> maximum value of N in NVAL.
  136. *> \endverbatim
  137. *>
  138. *> \param[out] COPYA
  139. *> \verbatim
  140. *> COPYA is REAL array, dimension (MMAX*NMAX)
  141. *> \endverbatim
  142. *>
  143. *> \param[out] B
  144. *> \verbatim
  145. *> B is REAL array, dimension (MMAX*NSMAX)
  146. *> where MMAX is the maximum value of M in MVAL and NSMAX is the
  147. *> maximum value of NRHS in NSVAL.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] COPYB
  151. *> \verbatim
  152. *> COPYB is REAL array, dimension (MMAX*NSMAX)
  153. *> \endverbatim
  154. *>
  155. *> \param[out] C
  156. *> \verbatim
  157. *> C is REAL array, dimension (MMAX*NSMAX)
  158. *> \endverbatim
  159. *>
  160. *> \param[out] S
  161. *> \verbatim
  162. *> S is REAL array, dimension
  163. *> (min(MMAX,NMAX))
  164. *> \endverbatim
  165. *>
  166. *> \param[out] COPYS
  167. *> \verbatim
  168. *> COPYS is REAL array, dimension
  169. *> (min(MMAX,NMAX))
  170. *> \endverbatim
  171. *>
  172. *> \param[out] WORK
  173. *> \verbatim
  174. *> WORK is REAL array,
  175. *> dimension (MMAX*NMAX + 4*NMAX + MMAX).
  176. *> \endverbatim
  177. *>
  178. *> \param[out] IWORK
  179. *> \verbatim
  180. *> IWORK is INTEGER array, dimension (15*NMAX)
  181. *> \endverbatim
  182. *>
  183. *> \param[in] NOUT
  184. *> \verbatim
  185. *> NOUT is INTEGER
  186. *> The unit number for output.
  187. *> \endverbatim
  188. *
  189. * Authors:
  190. * ========
  191. *
  192. *> \author Univ. of Tennessee
  193. *> \author Univ. of California Berkeley
  194. *> \author Univ. of Colorado Denver
  195. *> \author NAG Ltd.
  196. *
  197. *> \date November 2011
  198. *
  199. *> \ingroup single_lin
  200. *
  201. * =====================================================================
  202. SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
  203. $ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
  204. $ COPYB, C, S, COPYS, WORK, IWORK, NOUT )
  205. *
  206. * -- LAPACK test routine (version 3.4.0) --
  207. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  208. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  209. * November 2011
  210. *
  211. * .. Scalar Arguments ..
  212. LOGICAL TSTERR
  213. INTEGER NM, NN, NNB, NNS, NOUT
  214. REAL THRESH
  215. * ..
  216. * .. Array Arguments ..
  217. LOGICAL DOTYPE( * )
  218. INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
  219. $ NVAL( * ), NXVAL( * )
  220. REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
  221. $ COPYS( * ), S( * ), WORK( * )
  222. * ..
  223. *
  224. * =====================================================================
  225. *
  226. * .. Parameters ..
  227. INTEGER NTESTS
  228. PARAMETER ( NTESTS = 18 )
  229. INTEGER SMLSIZ
  230. PARAMETER ( SMLSIZ = 25 )
  231. REAL ONE, TWO, ZERO
  232. PARAMETER ( ONE = 1.0E0, TWO = 2.0E0, ZERO = 0.0E0 )
  233. * ..
  234. * .. Local Scalars ..
  235. CHARACTER TRANS
  236. CHARACTER*3 PATH
  237. INTEGER CRANK, I, IM, IN, INB, INFO, INS, IRANK,
  238. $ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
  239. $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
  240. $ NFAIL, NLVL, NRHS, NROWS, NRUN, RANK
  241. REAL EPS, NORMA, NORMB, RCOND
  242. * ..
  243. * .. Local Arrays ..
  244. INTEGER ISEED( 4 ), ISEEDY( 4 )
  245. REAL RESULT( NTESTS )
  246. * ..
  247. * .. External Functions ..
  248. REAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
  249. EXTERNAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
  250. * ..
  251. * .. External Subroutines ..
  252. EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS,
  253. $ SGELSD, SGELSS, SGELSX, SGELSY, SGEMM, SLACPY,
  254. $ SLARNV, SQRT13, SQRT15, SQRT16, SSCAL,
  255. $ XLAENV
  256. * ..
  257. * .. Intrinsic Functions ..
  258. INTRINSIC INT, LOG, MAX, MIN, REAL, SQRT
  259. * ..
  260. * .. Scalars in Common ..
  261. LOGICAL LERR, OK
  262. CHARACTER*32 SRNAMT
  263. INTEGER INFOT, IOUNIT
  264. * ..
  265. * .. Common blocks ..
  266. COMMON / INFOC / INFOT, IOUNIT, OK, LERR
  267. COMMON / SRNAMC / SRNAMT
  268. * ..
  269. * .. Data statements ..
  270. DATA ISEEDY / 1988, 1989, 1990, 1991 /
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. * Initialize constants and the random number seed.
  275. *
  276. PATH( 1: 1 ) = 'Single precision'
  277. PATH( 2: 3 ) = 'LS'
  278. NRUN = 0
  279. NFAIL = 0
  280. NERRS = 0
  281. DO 10 I = 1, 4
  282. ISEED( I ) = ISEEDY( I )
  283. 10 CONTINUE
  284. EPS = SLAMCH( 'Epsilon' )
  285. *
  286. * Threshold for rank estimation
  287. *
  288. RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
  289. *
  290. * Test the error exits
  291. *
  292. CALL XLAENV( 2, 2 )
  293. CALL XLAENV( 9, SMLSIZ )
  294. IF( TSTERR )
  295. $ CALL SERRLS( PATH, NOUT )
  296. *
  297. * Print the header if NM = 0 or NN = 0 and THRESH = 0.
  298. *
  299. IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
  300. $ CALL ALAHD( NOUT, PATH )
  301. INFOT = 0
  302. *
  303. DO 150 IM = 1, NM
  304. M = MVAL( IM )
  305. LDA = MAX( 1, M )
  306. *
  307. DO 140 IN = 1, NN
  308. N = NVAL( IN )
  309. MNMIN = MIN( M, N )
  310. LDB = MAX( 1, M, N )
  311. *
  312. DO 130 INS = 1, NNS
  313. NRHS = NSVAL( INS )
  314. NLVL = MAX( INT( LOG( MAX( ONE, REAL( MNMIN ) ) /
  315. $ REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1, 0 )
  316. LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
  317. $ M*N+4*MNMIN+MAX( M, N ), 12*MNMIN+2*MNMIN*SMLSIZ+
  318. $ 8*MNMIN*NLVL+MNMIN*NRHS+(SMLSIZ+1)**2 )
  319. *
  320. DO 120 IRANK = 1, 2
  321. DO 110 ISCALE = 1, 3
  322. ITYPE = ( IRANK-1 )*3 + ISCALE
  323. IF( .NOT.DOTYPE( ITYPE ) )
  324. $ GO TO 110
  325. *
  326. IF( IRANK.EQ.1 ) THEN
  327. *
  328. * Test SGELS
  329. *
  330. * Generate a matrix of scaling type ISCALE
  331. *
  332. CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
  333. $ ISEED )
  334. DO 40 INB = 1, NNB
  335. NB = NBVAL( INB )
  336. CALL XLAENV( 1, NB )
  337. CALL XLAENV( 3, NXVAL( INB ) )
  338. *
  339. DO 30 ITRAN = 1, 2
  340. IF( ITRAN.EQ.1 ) THEN
  341. TRANS = 'N'
  342. NROWS = M
  343. NCOLS = N
  344. ELSE
  345. TRANS = 'T'
  346. NROWS = N
  347. NCOLS = M
  348. END IF
  349. LDWORK = MAX( 1, NCOLS )
  350. *
  351. * Set up a consistent rhs
  352. *
  353. IF( NCOLS.GT.0 ) THEN
  354. CALL SLARNV( 2, ISEED, NCOLS*NRHS,
  355. $ WORK )
  356. CALL SSCAL( NCOLS*NRHS,
  357. $ ONE / REAL( NCOLS ), WORK,
  358. $ 1 )
  359. END IF
  360. CALL SGEMM( TRANS, 'No transpose', NROWS,
  361. $ NRHS, NCOLS, ONE, COPYA, LDA,
  362. $ WORK, LDWORK, ZERO, B, LDB )
  363. CALL SLACPY( 'Full', NROWS, NRHS, B, LDB,
  364. $ COPYB, LDB )
  365. *
  366. * Solve LS or overdetermined system
  367. *
  368. IF( M.GT.0 .AND. N.GT.0 ) THEN
  369. CALL SLACPY( 'Full', M, N, COPYA, LDA,
  370. $ A, LDA )
  371. CALL SLACPY( 'Full', NROWS, NRHS,
  372. $ COPYB, LDB, B, LDB )
  373. END IF
  374. SRNAMT = 'SGELS '
  375. CALL SGELS( TRANS, M, N, NRHS, A, LDA, B,
  376. $ LDB, WORK, LWORK, INFO )
  377. IF( INFO.NE.0 )
  378. $ CALL ALAERH( PATH, 'SGELS ', INFO, 0,
  379. $ TRANS, M, N, NRHS, -1, NB,
  380. $ ITYPE, NFAIL, NERRS,
  381. $ NOUT )
  382. *
  383. * Check correctness of results
  384. *
  385. LDWORK = MAX( 1, NROWS )
  386. IF( NROWS.GT.0 .AND. NRHS.GT.0 )
  387. $ CALL SLACPY( 'Full', NROWS, NRHS,
  388. $ COPYB, LDB, C, LDB )
  389. CALL SQRT16( TRANS, M, N, NRHS, COPYA,
  390. $ LDA, B, LDB, C, LDB, WORK,
  391. $ RESULT( 1 ) )
  392. *
  393. IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
  394. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
  395. *
  396. * Solving LS system
  397. *
  398. RESULT( 2 ) = SQRT17( TRANS, 1, M, N,
  399. $ NRHS, COPYA, LDA, B, LDB,
  400. $ COPYB, LDB, C, WORK,
  401. $ LWORK )
  402. ELSE
  403. *
  404. * Solving overdetermined system
  405. *
  406. RESULT( 2 ) = SQRT14( TRANS, M, N,
  407. $ NRHS, COPYA, LDA, B, LDB,
  408. $ WORK, LWORK )
  409. END IF
  410. *
  411. * Print information about the tests that
  412. * did not pass the threshold.
  413. *
  414. DO 20 K = 1, 2
  415. IF( RESULT( K ).GE.THRESH ) THEN
  416. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  417. $ CALL ALAHD( NOUT, PATH )
  418. WRITE( NOUT, FMT = 9999 )TRANS, M,
  419. $ N, NRHS, NB, ITYPE, K,
  420. $ RESULT( K )
  421. NFAIL = NFAIL + 1
  422. END IF
  423. 20 CONTINUE
  424. NRUN = NRUN + 2
  425. 30 CONTINUE
  426. 40 CONTINUE
  427. END IF
  428. *
  429. * Generate a matrix of scaling type ISCALE and rank
  430. * type IRANK.
  431. *
  432. CALL SQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
  433. $ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
  434. $ ISEED, WORK, LWORK )
  435. *
  436. * workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
  437. *
  438. * Initialize vector IWORK.
  439. *
  440. DO 50 J = 1, N
  441. IWORK( J ) = 0
  442. 50 CONTINUE
  443. LDWORK = MAX( 1, M )
  444. *
  445. * Test SGELSX
  446. *
  447. * SGELSX: Compute the minimum-norm solution X
  448. * to min( norm( A * X - B ) ) using a complete
  449. * orthogonal factorization.
  450. *
  451. CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
  452. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
  453. *
  454. SRNAMT = 'SGELSX'
  455. CALL SGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
  456. $ RCOND, CRANK, WORK, INFO )
  457. IF( INFO.NE.0 )
  458. $ CALL ALAERH( PATH, 'SGELSX', INFO, 0, ' ', M, N,
  459. $ NRHS, -1, NB, ITYPE, NFAIL, NERRS,
  460. $ NOUT )
  461. *
  462. * workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
  463. *
  464. * Test 3: Compute relative error in svd
  465. * workspace: M*N + 4*MIN(M,N) + MAX(M,N)
  466. *
  467. RESULT( 3 ) = SQRT12( CRANK, CRANK, A, LDA, COPYS,
  468. $ WORK, LWORK )
  469. *
  470. * Test 4: Compute error in solution
  471. * workspace: M*NRHS + M
  472. *
  473. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
  474. $ LDWORK )
  475. CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
  476. $ LDA, B, LDB, WORK, LDWORK,
  477. $ WORK( M*NRHS+1 ), RESULT( 4 ) )
  478. *
  479. * Test 5: Check norm of r'*A
  480. * workspace: NRHS*(M+N)
  481. *
  482. RESULT( 5 ) = ZERO
  483. IF( M.GT.CRANK )
  484. $ RESULT( 5 ) = SQRT17( 'No transpose', 1, M, N,
  485. $ NRHS, COPYA, LDA, B, LDB, COPYB,
  486. $ LDB, C, WORK, LWORK )
  487. *
  488. * Test 6: Check if x is in the rowspace of A
  489. * workspace: (M+NRHS)*(N+2)
  490. *
  491. RESULT( 6 ) = ZERO
  492. *
  493. IF( N.GT.CRANK )
  494. $ RESULT( 6 ) = SQRT14( 'No transpose', M, N,
  495. $ NRHS, COPYA, LDA, B, LDB, WORK,
  496. $ LWORK )
  497. *
  498. * Print information about the tests that did not
  499. * pass the threshold.
  500. *
  501. DO 60 K = 3, 6
  502. IF( RESULT( K ).GE.THRESH ) THEN
  503. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  504. $ CALL ALAHD( NOUT, PATH )
  505. WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
  506. $ ITYPE, K, RESULT( K )
  507. NFAIL = NFAIL + 1
  508. END IF
  509. 60 CONTINUE
  510. NRUN = NRUN + 4
  511. *
  512. * Loop for testing different block sizes.
  513. *
  514. DO 100 INB = 1, NNB
  515. NB = NBVAL( INB )
  516. CALL XLAENV( 1, NB )
  517. CALL XLAENV( 3, NXVAL( INB ) )
  518. *
  519. * Test SGELSY
  520. *
  521. * SGELSY: Compute the minimum-norm solution X
  522. * to min( norm( A * X - B ) )
  523. * using the rank-revealing orthogonal
  524. * factorization.
  525. *
  526. * Initialize vector IWORK.
  527. *
  528. DO 70 J = 1, N
  529. IWORK( J ) = 0
  530. 70 CONTINUE
  531. *
  532. * Set LWLSY to the adequate value.
  533. *
  534. LWLSY = MAX( 1, MNMIN+2*N+NB*( N+1 ),
  535. $ 2*MNMIN+NB*NRHS )
  536. *
  537. CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
  538. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
  539. $ LDB )
  540. *
  541. SRNAMT = 'SGELSY'
  542. CALL SGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
  543. $ RCOND, CRANK, WORK, LWLSY, INFO )
  544. IF( INFO.NE.0 )
  545. $ CALL ALAERH( PATH, 'SGELSY', INFO, 0, ' ', M,
  546. $ N, NRHS, -1, NB, ITYPE, NFAIL,
  547. $ NERRS, NOUT )
  548. *
  549. * Test 7: Compute relative error in svd
  550. * workspace: M*N + 4*MIN(M,N) + MAX(M,N)
  551. *
  552. RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA,
  553. $ COPYS, WORK, LWORK )
  554. *
  555. * Test 8: Compute error in solution
  556. * workspace: M*NRHS + M
  557. *
  558. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
  559. $ LDWORK )
  560. CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
  561. $ LDA, B, LDB, WORK, LDWORK,
  562. $ WORK( M*NRHS+1 ), RESULT( 8 ) )
  563. *
  564. * Test 9: Check norm of r'*A
  565. * workspace: NRHS*(M+N)
  566. *
  567. RESULT( 9 ) = ZERO
  568. IF( M.GT.CRANK )
  569. $ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
  570. $ N, NRHS, COPYA, LDA, B, LDB,
  571. $ COPYB, LDB, C, WORK, LWORK )
  572. *
  573. * Test 10: Check if x is in the rowspace of A
  574. * workspace: (M+NRHS)*(N+2)
  575. *
  576. RESULT( 10 ) = ZERO
  577. *
  578. IF( N.GT.CRANK )
  579. $ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
  580. $ NRHS, COPYA, LDA, B, LDB,
  581. $ WORK, LWORK )
  582. *
  583. * Test SGELSS
  584. *
  585. * SGELSS: Compute the minimum-norm solution X
  586. * to min( norm( A * X - B ) )
  587. * using the SVD.
  588. *
  589. CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
  590. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
  591. $ LDB )
  592. SRNAMT = 'SGELSS'
  593. CALL SGELSS( M, N, NRHS, A, LDA, B, LDB, S,
  594. $ RCOND, CRANK, WORK, LWORK, INFO )
  595. IF( INFO.NE.0 )
  596. $ CALL ALAERH( PATH, 'SGELSS', INFO, 0, ' ', M,
  597. $ N, NRHS, -1, NB, ITYPE, NFAIL,
  598. $ NERRS, NOUT )
  599. *
  600. * workspace used: 3*min(m,n) +
  601. * max(2*min(m,n),nrhs,max(m,n))
  602. *
  603. * Test 11: Compute relative error in svd
  604. *
  605. IF( RANK.GT.0 ) THEN
  606. CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
  607. RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
  608. $ SASUM( MNMIN, COPYS, 1 ) /
  609. $ ( EPS*REAL( MNMIN ) )
  610. ELSE
  611. RESULT( 11 ) = ZERO
  612. END IF
  613. *
  614. * Test 12: Compute error in solution
  615. *
  616. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
  617. $ LDWORK )
  618. CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
  619. $ LDA, B, LDB, WORK, LDWORK,
  620. $ WORK( M*NRHS+1 ), RESULT( 12 ) )
  621. *
  622. * Test 13: Check norm of r'*A
  623. *
  624. RESULT( 13 ) = ZERO
  625. IF( M.GT.CRANK )
  626. $ RESULT( 13 ) = SQRT17( 'No transpose', 1, M,
  627. $ N, NRHS, COPYA, LDA, B, LDB,
  628. $ COPYB, LDB, C, WORK, LWORK )
  629. *
  630. * Test 14: Check if x is in the rowspace of A
  631. *
  632. RESULT( 14 ) = ZERO
  633. IF( N.GT.CRANK )
  634. $ RESULT( 14 ) = SQRT14( 'No transpose', M, N,
  635. $ NRHS, COPYA, LDA, B, LDB,
  636. $ WORK, LWORK )
  637. *
  638. * Test SGELSD
  639. *
  640. * SGELSD: Compute the minimum-norm solution X
  641. * to min( norm( A * X - B ) ) using a
  642. * divide and conquer SVD.
  643. *
  644. * Initialize vector IWORK.
  645. *
  646. DO 80 J = 1, N
  647. IWORK( J ) = 0
  648. 80 CONTINUE
  649. *
  650. CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
  651. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
  652. $ LDB )
  653. *
  654. SRNAMT = 'SGELSD'
  655. CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
  656. $ RCOND, CRANK, WORK, LWORK, IWORK,
  657. $ INFO )
  658. IF( INFO.NE.0 )
  659. $ CALL ALAERH( PATH, 'SGELSD', INFO, 0, ' ', M,
  660. $ N, NRHS, -1, NB, ITYPE, NFAIL,
  661. $ NERRS, NOUT )
  662. *
  663. * Test 15: Compute relative error in svd
  664. *
  665. IF( RANK.GT.0 ) THEN
  666. CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
  667. RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
  668. $ SASUM( MNMIN, COPYS, 1 ) /
  669. $ ( EPS*REAL( MNMIN ) )
  670. ELSE
  671. RESULT( 15 ) = ZERO
  672. END IF
  673. *
  674. * Test 16: Compute error in solution
  675. *
  676. CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
  677. $ LDWORK )
  678. CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
  679. $ LDA, B, LDB, WORK, LDWORK,
  680. $ WORK( M*NRHS+1 ), RESULT( 16 ) )
  681. *
  682. * Test 17: Check norm of r'*A
  683. *
  684. RESULT( 17 ) = ZERO
  685. IF( M.GT.CRANK )
  686. $ RESULT( 17 ) = SQRT17( 'No transpose', 1, M,
  687. $ N, NRHS, COPYA, LDA, B, LDB,
  688. $ COPYB, LDB, C, WORK, LWORK )
  689. *
  690. * Test 18: Check if x is in the rowspace of A
  691. *
  692. RESULT( 18 ) = ZERO
  693. IF( N.GT.CRANK )
  694. $ RESULT( 18 ) = SQRT14( 'No transpose', M, N,
  695. $ NRHS, COPYA, LDA, B, LDB,
  696. $ WORK, LWORK )
  697. *
  698. * Print information about the tests that did not
  699. * pass the threshold.
  700. *
  701. DO 90 K = 7, NTESTS
  702. IF( RESULT( K ).GE.THRESH ) THEN
  703. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  704. $ CALL ALAHD( NOUT, PATH )
  705. WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
  706. $ ITYPE, K, RESULT( K )
  707. NFAIL = NFAIL + 1
  708. END IF
  709. 90 CONTINUE
  710. NRUN = NRUN + 12
  711. *
  712. 100 CONTINUE
  713. 110 CONTINUE
  714. 120 CONTINUE
  715. 130 CONTINUE
  716. 140 CONTINUE
  717. 150 CONTINUE
  718. *
  719. * Print a summary of the results.
  720. *
  721. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  722. *
  723. 9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
  724. $ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
  725. 9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
  726. $ ', type', I2, ', test(', I2, ')=', G12.5 )
  727. RETURN
  728. *
  729. * End of SDRVLS
  730. *
  731. END