You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zspsvx.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. *> \brief <b> ZSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSPSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
  22. * LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER FACT, UPLO
  26. * INTEGER INFO, LDB, LDX, N, NRHS
  27. * DOUBLE PRECISION RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  32. * COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  33. * $ X( LDX, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
  43. *> A = L*D*L**T to compute the solution to a complex system of linear
  44. *> equations A * X = B, where A is an N-by-N symmetric matrix stored
  45. *> in packed format and X and B are N-by-NRHS matrices.
  46. *>
  47. *> Error bounds on the solution and a condition estimate are also
  48. *> provided.
  49. *> \endverbatim
  50. *
  51. *> \par Description:
  52. * =================
  53. *>
  54. *> \verbatim
  55. *>
  56. *> The following steps are performed:
  57. *>
  58. *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
  59. *> A = U * D * U**T, if UPLO = 'U', or
  60. *> A = L * D * L**T, if UPLO = 'L',
  61. *> where U (or L) is a product of permutation and unit upper (lower)
  62. *> triangular matrices and D is symmetric and block diagonal with
  63. *> 1-by-1 and 2-by-2 diagonal blocks.
  64. *>
  65. *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
  66. *> returns with INFO = i. Otherwise, the factored form of A is used
  67. *> to estimate the condition number of the matrix A. If the
  68. *> reciprocal of the condition number is less than machine precision,
  69. *> INFO = N+1 is returned as a warning, but the routine still goes on
  70. *> to solve for X and compute error bounds as described below.
  71. *>
  72. *> 3. The system of equations is solved for X using the factored form
  73. *> of A.
  74. *>
  75. *> 4. Iterative refinement is applied to improve the computed solution
  76. *> matrix and calculate error bounds and backward error estimates
  77. *> for it.
  78. *> \endverbatim
  79. *
  80. * Arguments:
  81. * ==========
  82. *
  83. *> \param[in] FACT
  84. *> \verbatim
  85. *> FACT is CHARACTER*1
  86. *> Specifies whether or not the factored form of A has been
  87. *> supplied on entry.
  88. *> = 'F': On entry, AFP and IPIV contain the factored form
  89. *> of A. AP, AFP and IPIV will not be modified.
  90. *> = 'N': The matrix A will be copied to AFP and factored.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] UPLO
  94. *> \verbatim
  95. *> UPLO is CHARACTER*1
  96. *> = 'U': Upper triangle of A is stored;
  97. *> = 'L': Lower triangle of A is stored.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] N
  101. *> \verbatim
  102. *> N is INTEGER
  103. *> The number of linear equations, i.e., the order of the
  104. *> matrix A. N >= 0.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] NRHS
  108. *> \verbatim
  109. *> NRHS is INTEGER
  110. *> The number of right hand sides, i.e., the number of columns
  111. *> of the matrices B and X. NRHS >= 0.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] AP
  115. *> \verbatim
  116. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  117. *> The upper or lower triangle of the symmetric matrix A, packed
  118. *> columnwise in a linear array. The j-th column of A is stored
  119. *> in the array AP as follows:
  120. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  121. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  122. *> See below for further details.
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] AFP
  126. *> \verbatim
  127. *> AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
  128. *> If FACT = 'F', then AFP is an input argument and on entry
  129. *> contains the block diagonal matrix D and the multipliers used
  130. *> to obtain the factor U or L from the factorization
  131. *> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
  132. *> a packed triangular matrix in the same storage format as A.
  133. *>
  134. *> If FACT = 'N', then AFP is an output argument and on exit
  135. *> contains the block diagonal matrix D and the multipliers used
  136. *> to obtain the factor U or L from the factorization
  137. *> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
  138. *> a packed triangular matrix in the same storage format as A.
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] IPIV
  142. *> \verbatim
  143. *> IPIV is INTEGER array, dimension (N)
  144. *> If FACT = 'F', then IPIV is an input argument and on entry
  145. *> contains details of the interchanges and the block structure
  146. *> of D, as determined by ZSPTRF.
  147. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  148. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  149. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  150. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  151. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  152. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  153. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  154. *>
  155. *> If FACT = 'N', then IPIV is an output argument and on exit
  156. *> contains details of the interchanges and the block structure
  157. *> of D, as determined by ZSPTRF.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] B
  161. *> \verbatim
  162. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  163. *> The N-by-NRHS right hand side matrix B.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] LDB
  167. *> \verbatim
  168. *> LDB is INTEGER
  169. *> The leading dimension of the array B. LDB >= max(1,N).
  170. *> \endverbatim
  171. *>
  172. *> \param[out] X
  173. *> \verbatim
  174. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  175. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDX
  179. *> \verbatim
  180. *> LDX is INTEGER
  181. *> The leading dimension of the array X. LDX >= max(1,N).
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RCOND
  185. *> \verbatim
  186. *> RCOND is DOUBLE PRECISION
  187. *> The estimate of the reciprocal condition number of the matrix
  188. *> A. If RCOND is less than the machine precision (in
  189. *> particular, if RCOND = 0), the matrix is singular to working
  190. *> precision. This condition is indicated by a return code of
  191. *> INFO > 0.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] FERR
  195. *> \verbatim
  196. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  197. *> The estimated forward error bound for each solution vector
  198. *> X(j) (the j-th column of the solution matrix X).
  199. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  200. *> is an estimated upper bound for the magnitude of the largest
  201. *> element in (X(j) - XTRUE) divided by the magnitude of the
  202. *> largest element in X(j). The estimate is as reliable as
  203. *> the estimate for RCOND, and is almost always a slight
  204. *> overestimate of the true error.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] BERR
  208. *> \verbatim
  209. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  210. *> The componentwise relative backward error of each solution
  211. *> vector X(j) (i.e., the smallest relative change in
  212. *> any element of A or B that makes X(j) an exact solution).
  213. *> \endverbatim
  214. *>
  215. *> \param[out] WORK
  216. *> \verbatim
  217. *> WORK is COMPLEX*16 array, dimension (2*N)
  218. *> \endverbatim
  219. *>
  220. *> \param[out] RWORK
  221. *> \verbatim
  222. *> RWORK is DOUBLE PRECISION array, dimension (N)
  223. *> \endverbatim
  224. *>
  225. *> \param[out] INFO
  226. *> \verbatim
  227. *> INFO is INTEGER
  228. *> = 0: successful exit
  229. *> < 0: if INFO = -i, the i-th argument had an illegal value
  230. *> > 0: if INFO = i, and i is
  231. *> <= N: D(i,i) is exactly zero. The factorization
  232. *> has been completed but the factor D is exactly
  233. *> singular, so the solution and error bounds could
  234. *> not be computed. RCOND = 0 is returned.
  235. *> = N+1: D is nonsingular, but RCOND is less than machine
  236. *> precision, meaning that the matrix is singular
  237. *> to working precision. Nevertheless, the
  238. *> solution and error bounds are computed because
  239. *> there are a number of situations where the
  240. *> computed solution can be more accurate than the
  241. *> value of RCOND would suggest.
  242. *> \endverbatim
  243. *
  244. * Authors:
  245. * ========
  246. *
  247. *> \author Univ. of Tennessee
  248. *> \author Univ. of California Berkeley
  249. *> \author Univ. of Colorado Denver
  250. *> \author NAG Ltd.
  251. *
  252. *> \date April 2012
  253. *
  254. *> \ingroup complex16OTHERsolve
  255. *
  256. *> \par Further Details:
  257. * =====================
  258. *>
  259. *> \verbatim
  260. *>
  261. *> The packed storage scheme is illustrated by the following example
  262. *> when N = 4, UPLO = 'U':
  263. *>
  264. *> Two-dimensional storage of the symmetric matrix A:
  265. *>
  266. *> a11 a12 a13 a14
  267. *> a22 a23 a24
  268. *> a33 a34 (aij = aji)
  269. *> a44
  270. *>
  271. *> Packed storage of the upper triangle of A:
  272. *>
  273. *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
  274. *> \endverbatim
  275. *>
  276. * =====================================================================
  277. SUBROUTINE ZSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
  278. $ LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
  279. *
  280. * -- LAPACK driver routine (version 3.4.1) --
  281. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  282. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  283. * April 2012
  284. *
  285. * .. Scalar Arguments ..
  286. CHARACTER FACT, UPLO
  287. INTEGER INFO, LDB, LDX, N, NRHS
  288. DOUBLE PRECISION RCOND
  289. * ..
  290. * .. Array Arguments ..
  291. INTEGER IPIV( * )
  292. DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  293. COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  294. $ X( LDX, * )
  295. * ..
  296. *
  297. * =====================================================================
  298. *
  299. * .. Parameters ..
  300. DOUBLE PRECISION ZERO
  301. PARAMETER ( ZERO = 0.0D+0 )
  302. * ..
  303. * .. Local Scalars ..
  304. LOGICAL NOFACT
  305. DOUBLE PRECISION ANORM
  306. * ..
  307. * .. External Functions ..
  308. LOGICAL LSAME
  309. DOUBLE PRECISION DLAMCH, ZLANSP
  310. EXTERNAL LSAME, DLAMCH, ZLANSP
  311. * ..
  312. * .. External Subroutines ..
  313. EXTERNAL XERBLA, ZCOPY, ZLACPY, ZSPCON, ZSPRFS, ZSPTRF,
  314. $ ZSPTRS
  315. * ..
  316. * .. Intrinsic Functions ..
  317. INTRINSIC MAX
  318. * ..
  319. * .. Executable Statements ..
  320. *
  321. * Test the input parameters.
  322. *
  323. INFO = 0
  324. NOFACT = LSAME( FACT, 'N' )
  325. IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  326. INFO = -1
  327. ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  328. $ THEN
  329. INFO = -2
  330. ELSE IF( N.LT.0 ) THEN
  331. INFO = -3
  332. ELSE IF( NRHS.LT.0 ) THEN
  333. INFO = -4
  334. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  335. INFO = -9
  336. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  337. INFO = -11
  338. END IF
  339. IF( INFO.NE.0 ) THEN
  340. CALL XERBLA( 'ZSPSVX', -INFO )
  341. RETURN
  342. END IF
  343. *
  344. IF( NOFACT ) THEN
  345. *
  346. * Compute the factorization A = U*D*U**T or A = L*D*L**T.
  347. *
  348. CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
  349. CALL ZSPTRF( UPLO, N, AFP, IPIV, INFO )
  350. *
  351. * Return if INFO is non-zero.
  352. *
  353. IF( INFO.GT.0 )THEN
  354. RCOND = ZERO
  355. RETURN
  356. END IF
  357. END IF
  358. *
  359. * Compute the norm of the matrix A.
  360. *
  361. ANORM = ZLANSP( 'I', UPLO, N, AP, RWORK )
  362. *
  363. * Compute the reciprocal of the condition number of A.
  364. *
  365. CALL ZSPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO )
  366. *
  367. * Compute the solution vectors X.
  368. *
  369. CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  370. CALL ZSPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
  371. *
  372. * Use iterative refinement to improve the computed solutions and
  373. * compute error bounds and backward error estimates for them.
  374. *
  375. CALL ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
  376. $ BERR, WORK, RWORK, INFO )
  377. *
  378. * Set INFO = N+1 if the matrix is singular to working precision.
  379. *
  380. IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  381. $ INFO = N + 1
  382. *
  383. RETURN
  384. *
  385. * End of ZSPSVX
  386. *
  387. END