You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssbgvx.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. *> \brief \b SSBGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSBGVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  22. * LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  23. * LDZ, WORK, IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  28. * $ N
  29. * REAL ABSTOL, VL, VU
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IFAIL( * ), IWORK( * )
  33. * REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  34. * $ W( * ), WORK( * ), Z( LDZ, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SSBGVX computes selected eigenvalues, and optionally, eigenvectors
  44. *> of a real generalized symmetric-definite banded eigenproblem, of
  45. *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
  46. *> and banded, and B is also positive definite. Eigenvalues and
  47. *> eigenvectors can be selected by specifying either all eigenvalues,
  48. *> a range of values or a range of indices for the desired eigenvalues.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] JOBZ
  55. *> \verbatim
  56. *> JOBZ is CHARACTER*1
  57. *> = 'N': Compute eigenvalues only;
  58. *> = 'V': Compute eigenvalues and eigenvectors.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] RANGE
  62. *> \verbatim
  63. *> RANGE is CHARACTER*1
  64. *> = 'A': all eigenvalues will be found.
  65. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  66. *> will be found.
  67. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> = 'U': Upper triangles of A and B are stored;
  74. *> = 'L': Lower triangles of A and B are stored.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The order of the matrices A and B. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] KA
  84. *> \verbatim
  85. *> KA is INTEGER
  86. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  87. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] KB
  91. *> \verbatim
  92. *> KB is INTEGER
  93. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  94. *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] AB
  98. *> \verbatim
  99. *> AB is REAL array, dimension (LDAB, N)
  100. *> On entry, the upper or lower triangle of the symmetric band
  101. *> matrix A, stored in the first ka+1 rows of the array. The
  102. *> j-th column of A is stored in the j-th column of the array AB
  103. *> as follows:
  104. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  105. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  106. *>
  107. *> On exit, the contents of AB are destroyed.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDAB
  111. *> \verbatim
  112. *> LDAB is INTEGER
  113. *> The leading dimension of the array AB. LDAB >= KA+1.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] BB
  117. *> \verbatim
  118. *> BB is REAL array, dimension (LDBB, N)
  119. *> On entry, the upper or lower triangle of the symmetric band
  120. *> matrix B, stored in the first kb+1 rows of the array. The
  121. *> j-th column of B is stored in the j-th column of the array BB
  122. *> as follows:
  123. *> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
  124. *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
  125. *>
  126. *> On exit, the factor S from the split Cholesky factorization
  127. *> B = S**T*S, as returned by SPBSTF.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDBB
  131. *> \verbatim
  132. *> LDBB is INTEGER
  133. *> The leading dimension of the array BB. LDBB >= KB+1.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] Q
  137. *> \verbatim
  138. *> Q is REAL array, dimension (LDQ, N)
  139. *> If JOBZ = 'V', the n-by-n matrix used in the reduction of
  140. *> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
  141. *> and consequently C to tridiagonal form.
  142. *> If JOBZ = 'N', the array Q is not referenced.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDQ
  146. *> \verbatim
  147. *> LDQ is INTEGER
  148. *> The leading dimension of the array Q. If JOBZ = 'N',
  149. *> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
  150. *> \endverbatim
  151. *>
  152. *> \param[in] VL
  153. *> \verbatim
  154. *> VL is REAL
  155. *> \endverbatim
  156. *>
  157. *> \param[in] VU
  158. *> \verbatim
  159. *> VU is REAL
  160. *>
  161. *> If RANGE='V', the lower and upper bounds of the interval to
  162. *> be searched for eigenvalues. VL < VU.
  163. *> Not referenced if RANGE = 'A' or 'I'.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] IL
  167. *> \verbatim
  168. *> IL is INTEGER
  169. *> \endverbatim
  170. *>
  171. *> \param[in] IU
  172. *> \verbatim
  173. *> IU is INTEGER
  174. *>
  175. *> If RANGE='I', the indices (in ascending order) of the
  176. *> smallest and largest eigenvalues to be returned.
  177. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  178. *> Not referenced if RANGE = 'A' or 'V'.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] ABSTOL
  182. *> \verbatim
  183. *> ABSTOL is REAL
  184. *> The absolute error tolerance for the eigenvalues.
  185. *> An approximate eigenvalue is accepted as converged
  186. *> when it is determined to lie in an interval [a,b]
  187. *> of width less than or equal to
  188. *>
  189. *> ABSTOL + EPS * max( |a|,|b| ) ,
  190. *>
  191. *> where EPS is the machine precision. If ABSTOL is less than
  192. *> or equal to zero, then EPS*|T| will be used in its place,
  193. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  194. *> by reducing A to tridiagonal form.
  195. *>
  196. *> Eigenvalues will be computed most accurately when ABSTOL is
  197. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  198. *> If this routine returns with INFO>0, indicating that some
  199. *> eigenvectors did not converge, try setting ABSTOL to
  200. *> 2*SLAMCH('S').
  201. *> \endverbatim
  202. *>
  203. *> \param[out] M
  204. *> \verbatim
  205. *> M is INTEGER
  206. *> The total number of eigenvalues found. 0 <= M <= N.
  207. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  208. *> \endverbatim
  209. *>
  210. *> \param[out] W
  211. *> \verbatim
  212. *> W is REAL array, dimension (N)
  213. *> If INFO = 0, the eigenvalues in ascending order.
  214. *> \endverbatim
  215. *>
  216. *> \param[out] Z
  217. *> \verbatim
  218. *> Z is REAL array, dimension (LDZ, N)
  219. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  220. *> eigenvectors, with the i-th column of Z holding the
  221. *> eigenvector associated with W(i). The eigenvectors are
  222. *> normalized so Z**T*B*Z = I.
  223. *> If JOBZ = 'N', then Z is not referenced.
  224. *> \endverbatim
  225. *>
  226. *> \param[in] LDZ
  227. *> \verbatim
  228. *> LDZ is INTEGER
  229. *> The leading dimension of the array Z. LDZ >= 1, and if
  230. *> JOBZ = 'V', LDZ >= max(1,N).
  231. *> \endverbatim
  232. *>
  233. *> \param[out] WORK
  234. *> \verbatim
  235. *> WORK is REAL array, dimension (7N)
  236. *> \endverbatim
  237. *>
  238. *> \param[out] IWORK
  239. *> \verbatim
  240. *> IWORK is INTEGER array, dimension (5N)
  241. *> \endverbatim
  242. *>
  243. *> \param[out] IFAIL
  244. *> \verbatim
  245. *> IFAIL is INTEGER array, dimension (M)
  246. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  247. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  248. *> indices of the eigenvalues that failed to converge.
  249. *> If JOBZ = 'N', then IFAIL is not referenced.
  250. *> \endverbatim
  251. *>
  252. *> \param[out] INFO
  253. *> \verbatim
  254. *> INFO is INTEGER
  255. *> = 0 : successful exit
  256. *> < 0 : if INFO = -i, the i-th argument had an illegal value
  257. *> <= N: if INFO = i, then i eigenvectors failed to converge.
  258. *> Their indices are stored in IFAIL.
  259. *> > N : SPBSTF returned an error code; i.e.,
  260. *> if INFO = N + i, for 1 <= i <= N, then the leading
  261. *> minor of order i of B is not positive definite.
  262. *> The factorization of B could not be completed and
  263. *> no eigenvalues or eigenvectors were computed.
  264. *> \endverbatim
  265. *
  266. * Authors:
  267. * ========
  268. *
  269. *> \author Univ. of Tennessee
  270. *> \author Univ. of California Berkeley
  271. *> \author Univ. of Colorado Denver
  272. *> \author NAG Ltd.
  273. *
  274. *> \date November 2011
  275. *
  276. *> \ingroup realOTHEReigen
  277. *
  278. *> \par Contributors:
  279. * ==================
  280. *>
  281. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  282. *
  283. * =====================================================================
  284. SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  285. $ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  286. $ LDZ, WORK, IWORK, IFAIL, INFO )
  287. *
  288. * -- LAPACK driver routine (version 3.4.0) --
  289. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  290. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  291. * November 2011
  292. *
  293. * .. Scalar Arguments ..
  294. CHARACTER JOBZ, RANGE, UPLO
  295. INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  296. $ N
  297. REAL ABSTOL, VL, VU
  298. * ..
  299. * .. Array Arguments ..
  300. INTEGER IFAIL( * ), IWORK( * )
  301. REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  302. $ W( * ), WORK( * ), Z( LDZ, * )
  303. * ..
  304. *
  305. * =====================================================================
  306. *
  307. * .. Parameters ..
  308. REAL ZERO, ONE
  309. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  310. * ..
  311. * .. Local Scalars ..
  312. LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  313. CHARACTER ORDER, VECT
  314. INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  315. $ INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
  316. REAL TMP1
  317. * ..
  318. * .. External Functions ..
  319. LOGICAL LSAME
  320. EXTERNAL LSAME
  321. * ..
  322. * .. External Subroutines ..
  323. EXTERNAL SCOPY, SGEMV, SLACPY, SPBSTF, SSBGST, SSBTRD,
  324. $ SSTEBZ, SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
  325. * ..
  326. * .. Intrinsic Functions ..
  327. INTRINSIC MIN
  328. * ..
  329. * .. Executable Statements ..
  330. *
  331. * Test the input parameters.
  332. *
  333. WANTZ = LSAME( JOBZ, 'V' )
  334. UPPER = LSAME( UPLO, 'U' )
  335. ALLEIG = LSAME( RANGE, 'A' )
  336. VALEIG = LSAME( RANGE, 'V' )
  337. INDEIG = LSAME( RANGE, 'I' )
  338. *
  339. INFO = 0
  340. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  341. INFO = -1
  342. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  343. INFO = -2
  344. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  345. INFO = -3
  346. ELSE IF( N.LT.0 ) THEN
  347. INFO = -4
  348. ELSE IF( KA.LT.0 ) THEN
  349. INFO = -5
  350. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  351. INFO = -6
  352. ELSE IF( LDAB.LT.KA+1 ) THEN
  353. INFO = -8
  354. ELSE IF( LDBB.LT.KB+1 ) THEN
  355. INFO = -10
  356. ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  357. INFO = -12
  358. ELSE
  359. IF( VALEIG ) THEN
  360. IF( N.GT.0 .AND. VU.LE.VL )
  361. $ INFO = -14
  362. ELSE IF( INDEIG ) THEN
  363. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  364. INFO = -15
  365. ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  366. INFO = -16
  367. END IF
  368. END IF
  369. END IF
  370. IF( INFO.EQ.0) THEN
  371. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  372. INFO = -21
  373. END IF
  374. END IF
  375. *
  376. IF( INFO.NE.0 ) THEN
  377. CALL XERBLA( 'SSBGVX', -INFO )
  378. RETURN
  379. END IF
  380. *
  381. * Quick return if possible
  382. *
  383. M = 0
  384. IF( N.EQ.0 )
  385. $ RETURN
  386. *
  387. * Form a split Cholesky factorization of B.
  388. *
  389. CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  390. IF( INFO.NE.0 ) THEN
  391. INFO = N + INFO
  392. RETURN
  393. END IF
  394. *
  395. * Transform problem to standard eigenvalue problem.
  396. *
  397. CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  398. $ WORK, IINFO )
  399. *
  400. * Reduce symmetric band matrix to tridiagonal form.
  401. *
  402. INDD = 1
  403. INDE = INDD + N
  404. INDWRK = INDE + N
  405. IF( WANTZ ) THEN
  406. VECT = 'U'
  407. ELSE
  408. VECT = 'N'
  409. END IF
  410. CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
  411. $ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  412. *
  413. * If all eigenvalues are desired and ABSTOL is less than or equal
  414. * to zero, then call SSTERF or SSTEQR. If this fails for some
  415. * eigenvalue, then try SSTEBZ.
  416. *
  417. TEST = .FALSE.
  418. IF( INDEIG ) THEN
  419. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  420. TEST = .TRUE.
  421. END IF
  422. END IF
  423. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  424. CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
  425. INDEE = INDWRK + 2*N
  426. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  427. IF( .NOT.WANTZ ) THEN
  428. CALL SSTERF( N, W, WORK( INDEE ), INFO )
  429. ELSE
  430. CALL SLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  431. CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  432. $ WORK( INDWRK ), INFO )
  433. IF( INFO.EQ.0 ) THEN
  434. DO 10 I = 1, N
  435. IFAIL( I ) = 0
  436. 10 CONTINUE
  437. END IF
  438. END IF
  439. IF( INFO.EQ.0 ) THEN
  440. M = N
  441. GO TO 30
  442. END IF
  443. INFO = 0
  444. END IF
  445. *
  446. * Otherwise, call SSTEBZ and, if eigenvectors are desired,
  447. * call SSTEIN.
  448. *
  449. IF( WANTZ ) THEN
  450. ORDER = 'B'
  451. ELSE
  452. ORDER = 'E'
  453. END IF
  454. INDIBL = 1
  455. INDISP = INDIBL + N
  456. INDIWO = INDISP + N
  457. CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  458. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  459. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  460. $ IWORK( INDIWO ), INFO )
  461. *
  462. IF( WANTZ ) THEN
  463. CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  464. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  465. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  466. *
  467. * Apply transformation matrix used in reduction to tridiagonal
  468. * form to eigenvectors returned by SSTEIN.
  469. *
  470. DO 20 J = 1, M
  471. CALL SCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  472. CALL SGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  473. $ Z( 1, J ), 1 )
  474. 20 CONTINUE
  475. END IF
  476. *
  477. 30 CONTINUE
  478. *
  479. * If eigenvalues are not in order, then sort them, along with
  480. * eigenvectors.
  481. *
  482. IF( WANTZ ) THEN
  483. DO 50 J = 1, M - 1
  484. I = 0
  485. TMP1 = W( J )
  486. DO 40 JJ = J + 1, M
  487. IF( W( JJ ).LT.TMP1 ) THEN
  488. I = JJ
  489. TMP1 = W( JJ )
  490. END IF
  491. 40 CONTINUE
  492. *
  493. IF( I.NE.0 ) THEN
  494. ITMP1 = IWORK( INDIBL+I-1 )
  495. W( I ) = W( J )
  496. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  497. W( J ) = TMP1
  498. IWORK( INDIBL+J-1 ) = ITMP1
  499. CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  500. IF( INFO.NE.0 ) THEN
  501. ITMP1 = IFAIL( I )
  502. IFAIL( I ) = IFAIL( J )
  503. IFAIL( J ) = ITMP1
  504. END IF
  505. END IF
  506. 50 CONTINUE
  507. END IF
  508. *
  509. RETURN
  510. *
  511. * End of SSBGVX
  512. *
  513. END