You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmql.f 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. *> \brief \b CUNMQL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMQL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmql.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmql.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmql.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CUNMQL overwrites the general complex M-by-N matrix C with
  40. *>
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> where Q is a complex unitary matrix defined as the product of k
  46. *> elementary reflectors
  47. *>
  48. *> Q = H(k) . . . H(2) H(1)
  49. *>
  50. *> as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N
  51. *> if SIDE = 'R'.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**H from the Left;
  61. *> = 'R': apply Q or Q**H from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> = 'N': No transpose, apply Q;
  68. *> = 'C': Transpose, apply Q**H.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] M
  72. *> \verbatim
  73. *> M is INTEGER
  74. *> The number of rows of the matrix C. M >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The number of columns of the matrix C. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] K
  84. *> \verbatim
  85. *> K is INTEGER
  86. *> The number of elementary reflectors whose product defines
  87. *> the matrix Q.
  88. *> If SIDE = 'L', M >= K >= 0;
  89. *> if SIDE = 'R', N >= K >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension (LDA,K)
  95. *> The i-th column must contain the vector which defines the
  96. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  97. *> CGEQLF in the last k columns of its array argument A.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDA
  101. *> \verbatim
  102. *> LDA is INTEGER
  103. *> The leading dimension of the array A.
  104. *> If SIDE = 'L', LDA >= max(1,M);
  105. *> if SIDE = 'R', LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] TAU
  109. *> \verbatim
  110. *> TAU is COMPLEX array, dimension (K)
  111. *> TAU(i) must contain the scalar factor of the elementary
  112. *> reflector H(i), as returned by CGEQLF.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] C
  116. *> \verbatim
  117. *> C is COMPLEX array, dimension (LDC,N)
  118. *> On entry, the M-by-N matrix C.
  119. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDC
  123. *> \verbatim
  124. *> LDC is INTEGER
  125. *> The leading dimension of the array C. LDC >= max(1,M).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  131. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *> If SIDE = 'L', LWORK >= max(1,N);
  139. *> if SIDE = 'R', LWORK >= max(1,M).
  140. *> For optimum performance LWORK >= N*NB if SIDE = 'L', and
  141. *> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
  142. *> blocksize.
  143. *>
  144. *> If LWORK = -1, then a workspace query is assumed; the routine
  145. *> only calculates the optimal size of the WORK array, returns
  146. *> this value as the first entry of the WORK array, and no error
  147. *> message related to LWORK is issued by XERBLA.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> = 0: successful exit
  154. *> < 0: if INFO = -i, the i-th argument had an illegal value
  155. *> \endverbatim
  156. *
  157. * Authors:
  158. * ========
  159. *
  160. *> \author Univ. of Tennessee
  161. *> \author Univ. of California Berkeley
  162. *> \author Univ. of Colorado Denver
  163. *> \author NAG Ltd.
  164. *
  165. *> \date November 2011
  166. *
  167. *> \ingroup complexOTHERcomputational
  168. *
  169. * =====================================================================
  170. SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  171. $ WORK, LWORK, INFO )
  172. *
  173. * -- LAPACK computational routine (version 3.4.0) --
  174. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  175. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176. * November 2011
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER SIDE, TRANS
  180. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  181. * ..
  182. * .. Array Arguments ..
  183. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  184. $ WORK( * )
  185. * ..
  186. *
  187. * =====================================================================
  188. *
  189. * .. Parameters ..
  190. INTEGER NBMAX, LDT
  191. PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
  192. * ..
  193. * .. Local Scalars ..
  194. LOGICAL LEFT, LQUERY, NOTRAN
  195. INTEGER I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT,
  196. $ MI, NB, NBMIN, NI, NQ, NW
  197. * ..
  198. * .. Local Arrays ..
  199. COMPLEX T( LDT, NBMAX )
  200. * ..
  201. * .. External Functions ..
  202. LOGICAL LSAME
  203. INTEGER ILAENV
  204. EXTERNAL LSAME, ILAENV
  205. * ..
  206. * .. External Subroutines ..
  207. EXTERNAL CLARFB, CLARFT, CUNM2L, XERBLA
  208. * ..
  209. * .. Intrinsic Functions ..
  210. INTRINSIC MAX, MIN
  211. * ..
  212. * .. Executable Statements ..
  213. *
  214. * Test the input arguments
  215. *
  216. INFO = 0
  217. LEFT = LSAME( SIDE, 'L' )
  218. NOTRAN = LSAME( TRANS, 'N' )
  219. LQUERY = ( LWORK.EQ.-1 )
  220. *
  221. * NQ is the order of Q and NW is the minimum dimension of WORK
  222. *
  223. IF( LEFT ) THEN
  224. NQ = M
  225. NW = MAX( 1, N )
  226. ELSE
  227. NQ = N
  228. NW = MAX( 1, M )
  229. END IF
  230. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  231. INFO = -1
  232. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  233. INFO = -2
  234. ELSE IF( M.LT.0 ) THEN
  235. INFO = -3
  236. ELSE IF( N.LT.0 ) THEN
  237. INFO = -4
  238. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  239. INFO = -5
  240. ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  241. INFO = -7
  242. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  243. INFO = -10
  244. END IF
  245. *
  246. IF( INFO.EQ.0 ) THEN
  247. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  248. LWKOPT = 1
  249. ELSE
  250. *
  251. * Determine the block size. NB may be at most NBMAX, where
  252. * NBMAX is used to define the local array T.
  253. *
  254. NB = MIN( NBMAX, ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N,
  255. $ K, -1 ) )
  256. LWKOPT = NW*NB
  257. END IF
  258. WORK( 1 ) = LWKOPT
  259. *
  260. IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  261. INFO = -12
  262. END IF
  263. END IF
  264. *
  265. IF( INFO.NE.0 ) THEN
  266. CALL XERBLA( 'CUNMQL', -INFO )
  267. RETURN
  268. ELSE IF( LQUERY ) THEN
  269. RETURN
  270. END IF
  271. *
  272. * Quick return if possible
  273. *
  274. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  275. RETURN
  276. END IF
  277. *
  278. NBMIN = 2
  279. LDWORK = NW
  280. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  281. IWS = NW*NB
  282. IF( LWORK.LT.IWS ) THEN
  283. NB = LWORK / LDWORK
  284. NBMIN = MAX( 2, ILAENV( 2, 'CUNMQL', SIDE // TRANS, M, N, K,
  285. $ -1 ) )
  286. END IF
  287. ELSE
  288. IWS = NW
  289. END IF
  290. *
  291. IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  292. *
  293. * Use unblocked code
  294. *
  295. CALL CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  296. $ IINFO )
  297. ELSE
  298. *
  299. * Use blocked code
  300. *
  301. IF( ( LEFT .AND. NOTRAN ) .OR.
  302. $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  303. I1 = 1
  304. I2 = K
  305. I3 = NB
  306. ELSE
  307. I1 = ( ( K-1 ) / NB )*NB + 1
  308. I2 = 1
  309. I3 = -NB
  310. END IF
  311. *
  312. IF( LEFT ) THEN
  313. NI = N
  314. ELSE
  315. MI = M
  316. END IF
  317. *
  318. DO 10 I = I1, I2, I3
  319. IB = MIN( NB, K-I+1 )
  320. *
  321. * Form the triangular factor of the block reflector
  322. * H = H(i+ib-1) . . . H(i+1) H(i)
  323. *
  324. CALL CLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
  325. $ A( 1, I ), LDA, TAU( I ), T, LDT )
  326. IF( LEFT ) THEN
  327. *
  328. * H or H**H is applied to C(1:m-k+i+ib-1,1:n)
  329. *
  330. MI = M - K + I + IB - 1
  331. ELSE
  332. *
  333. * H or H**H is applied to C(1:m,1:n-k+i+ib-1)
  334. *
  335. NI = N - K + I + IB - 1
  336. END IF
  337. *
  338. * Apply H or H**H
  339. *
  340. CALL CLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
  341. $ IB, A( 1, I ), LDA, T, LDT, C, LDC, WORK,
  342. $ LDWORK )
  343. 10 CONTINUE
  344. END IF
  345. WORK( 1 ) = LWKOPT
  346. RETURN
  347. *
  348. * End of CUNMQL
  349. *
  350. END