You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatbs.f 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. *> \brief \b CLATBS solves a triangular banded system of equations.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATBS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatbs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatbs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatbs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  22. * SCALE, CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, KD, LDAB, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX AB( LDAB, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATBS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow, where A is an upper or lower
  45. *> triangular band matrix. Here A**T denotes the transpose of A, x and b
  46. *> are n-element vectors, and s is a scaling factor, usually less than
  47. *> or equal to 1, chosen so that the components of x will be less than
  48. *> the overflow threshold. If the unscaled problem will not cause
  49. *> overflow, the Level 2 BLAS routine CTBSV is called. If the matrix A
  50. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  51. *> non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] KD
  98. *> \verbatim
  99. *> KD is INTEGER
  100. *> The number of subdiagonals or superdiagonals in the
  101. *> triangular matrix A. KD >= 0.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] AB
  105. *> \verbatim
  106. *> AB is COMPLEX array, dimension (LDAB,N)
  107. *> The upper or lower triangular band matrix A, stored in the
  108. *> first KD+1 rows of the array. The j-th column of A is stored
  109. *> in the j-th column of the array AB as follows:
  110. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  111. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDAB
  115. *> \verbatim
  116. *> LDAB is INTEGER
  117. *> The leading dimension of the array AB. LDAB >= KD+1.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X
  121. *> \verbatim
  122. *> X is COMPLEX array, dimension (N)
  123. *> On entry, the right hand side b of the triangular system.
  124. *> On exit, X is overwritten by the solution vector x.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] SCALE
  128. *> \verbatim
  129. *> SCALE is REAL
  130. *> The scaling factor s for the triangular system
  131. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  132. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  133. *> the vector x is an exact or approximate solution to A*x = 0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in,out] CNORM
  137. *> \verbatim
  138. *> CNORM is REAL array, dimension (N)
  139. *>
  140. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  141. *> contains the norm of the off-diagonal part of the j-th column
  142. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  143. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  144. *> must be greater than or equal to the 1-norm.
  145. *>
  146. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  147. *> returns the 1-norm of the offdiagonal part of the j-th column
  148. *> of A.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] INFO
  152. *> \verbatim
  153. *> INFO is INTEGER
  154. *> = 0: successful exit
  155. *> < 0: if INFO = -k, the k-th argument had an illegal value
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \date December 2016
  167. *
  168. *> \ingroup complexOTHERauxiliary
  169. *
  170. *> \par Further Details:
  171. * =====================
  172. *>
  173. *> \verbatim
  174. *>
  175. *> A rough bound on x is computed; if that is less than overflow, CTBSV
  176. *> is called, otherwise, specific code is used which checks for possible
  177. *> overflow or divide-by-zero at every operation.
  178. *>
  179. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  180. *> if A is lower triangular is
  181. *>
  182. *> x[1:n] := b[1:n]
  183. *> for j = 1, ..., n
  184. *> x(j) := x(j) / A(j,j)
  185. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  186. *> end
  187. *>
  188. *> Define bounds on the components of x after j iterations of the loop:
  189. *> M(j) = bound on x[1:j]
  190. *> G(j) = bound on x[j+1:n]
  191. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  192. *>
  193. *> Then for iteration j+1 we have
  194. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  195. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  196. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  197. *>
  198. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  199. *> column j+1 of A, not counting the diagonal. Hence
  200. *>
  201. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  202. *> 1<=i<=j
  203. *> and
  204. *>
  205. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  206. *> 1<=i< j
  207. *>
  208. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTBSV if the
  209. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  210. *> max(underflow, 1/overflow).
  211. *>
  212. *> The bound on x(j) is also used to determine when a step in the
  213. *> columnwise method can be performed without fear of overflow. If
  214. *> the computed bound is greater than a large constant, x is scaled to
  215. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  216. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  217. *>
  218. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  219. *> A**H *x = b. The basic algorithm for A upper triangular is
  220. *>
  221. *> for j = 1, ..., n
  222. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  223. *> end
  224. *>
  225. *> We simultaneously compute two bounds
  226. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  227. *> M(j) = bound on x(i), 1<=i<=j
  228. *>
  229. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  230. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  231. *> Then the bound on x(j) is
  232. *>
  233. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  234. *>
  235. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  236. *> 1<=i<=j
  237. *>
  238. *> and we can safely call CTBSV if 1/M(n) and 1/G(n) are both greater
  239. *> than max(underflow, 1/overflow).
  240. *> \endverbatim
  241. *>
  242. * =====================================================================
  243. SUBROUTINE CLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  244. $ SCALE, CNORM, INFO )
  245. *
  246. * -- LAPACK auxiliary routine (version 3.7.0) --
  247. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  248. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  249. * December 2016
  250. *
  251. * .. Scalar Arguments ..
  252. CHARACTER DIAG, NORMIN, TRANS, UPLO
  253. INTEGER INFO, KD, LDAB, N
  254. REAL SCALE
  255. * ..
  256. * .. Array Arguments ..
  257. REAL CNORM( * )
  258. COMPLEX AB( LDAB, * ), X( * )
  259. * ..
  260. *
  261. * =====================================================================
  262. *
  263. * .. Parameters ..
  264. REAL ZERO, HALF, ONE, TWO
  265. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  266. $ TWO = 2.0E+0 )
  267. * ..
  268. * .. Local Scalars ..
  269. LOGICAL NOTRAN, NOUNIT, UPPER
  270. INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  271. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  272. $ XBND, XJ, XMAX
  273. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  274. * ..
  275. * .. External Functions ..
  276. LOGICAL LSAME
  277. INTEGER ICAMAX, ISAMAX
  278. REAL SCASUM, SLAMCH
  279. COMPLEX CDOTC, CDOTU, CLADIV
  280. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  281. $ CDOTU, CLADIV
  282. * ..
  283. * .. External Subroutines ..
  284. EXTERNAL CAXPY, CSSCAL, CTBSV, SLABAD, SSCAL, XERBLA
  285. * ..
  286. * .. Intrinsic Functions ..
  287. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  288. * ..
  289. * .. Statement Functions ..
  290. REAL CABS1, CABS2
  291. * ..
  292. * .. Statement Function definitions ..
  293. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  294. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  295. $ ABS( AIMAG( ZDUM ) / 2. )
  296. * ..
  297. * .. Executable Statements ..
  298. *
  299. INFO = 0
  300. UPPER = LSAME( UPLO, 'U' )
  301. NOTRAN = LSAME( TRANS, 'N' )
  302. NOUNIT = LSAME( DIAG, 'N' )
  303. *
  304. * Test the input parameters.
  305. *
  306. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  307. INFO = -1
  308. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  309. $ LSAME( TRANS, 'C' ) ) THEN
  310. INFO = -2
  311. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  312. INFO = -3
  313. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  314. $ LSAME( NORMIN, 'N' ) ) THEN
  315. INFO = -4
  316. ELSE IF( N.LT.0 ) THEN
  317. INFO = -5
  318. ELSE IF( KD.LT.0 ) THEN
  319. INFO = -6
  320. ELSE IF( LDAB.LT.KD+1 ) THEN
  321. INFO = -8
  322. END IF
  323. IF( INFO.NE.0 ) THEN
  324. CALL XERBLA( 'CLATBS', -INFO )
  325. RETURN
  326. END IF
  327. *
  328. * Quick return if possible
  329. *
  330. IF( N.EQ.0 )
  331. $ RETURN
  332. *
  333. * Determine machine dependent parameters to control overflow.
  334. *
  335. SMLNUM = SLAMCH( 'Safe minimum' )
  336. BIGNUM = ONE / SMLNUM
  337. CALL SLABAD( SMLNUM, BIGNUM )
  338. SMLNUM = SMLNUM / SLAMCH( 'Precision' )
  339. BIGNUM = ONE / SMLNUM
  340. SCALE = ONE
  341. *
  342. IF( LSAME( NORMIN, 'N' ) ) THEN
  343. *
  344. * Compute the 1-norm of each column, not including the diagonal.
  345. *
  346. IF( UPPER ) THEN
  347. *
  348. * A is upper triangular.
  349. *
  350. DO 10 J = 1, N
  351. JLEN = MIN( KD, J-1 )
  352. CNORM( J ) = SCASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  353. 10 CONTINUE
  354. ELSE
  355. *
  356. * A is lower triangular.
  357. *
  358. DO 20 J = 1, N
  359. JLEN = MIN( KD, N-J )
  360. IF( JLEN.GT.0 ) THEN
  361. CNORM( J ) = SCASUM( JLEN, AB( 2, J ), 1 )
  362. ELSE
  363. CNORM( J ) = ZERO
  364. END IF
  365. 20 CONTINUE
  366. END IF
  367. END IF
  368. *
  369. * Scale the column norms by TSCAL if the maximum element in CNORM is
  370. * greater than BIGNUM/2.
  371. *
  372. IMAX = ISAMAX( N, CNORM, 1 )
  373. TMAX = CNORM( IMAX )
  374. IF( TMAX.LE.BIGNUM*HALF ) THEN
  375. TSCAL = ONE
  376. ELSE
  377. TSCAL = HALF / ( SMLNUM*TMAX )
  378. CALL SSCAL( N, TSCAL, CNORM, 1 )
  379. END IF
  380. *
  381. * Compute a bound on the computed solution vector to see if the
  382. * Level 2 BLAS routine CTBSV can be used.
  383. *
  384. XMAX = ZERO
  385. DO 30 J = 1, N
  386. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  387. 30 CONTINUE
  388. XBND = XMAX
  389. IF( NOTRAN ) THEN
  390. *
  391. * Compute the growth in A * x = b.
  392. *
  393. IF( UPPER ) THEN
  394. JFIRST = N
  395. JLAST = 1
  396. JINC = -1
  397. MAIND = KD + 1
  398. ELSE
  399. JFIRST = 1
  400. JLAST = N
  401. JINC = 1
  402. MAIND = 1
  403. END IF
  404. *
  405. IF( TSCAL.NE.ONE ) THEN
  406. GROW = ZERO
  407. GO TO 60
  408. END IF
  409. *
  410. IF( NOUNIT ) THEN
  411. *
  412. * A is non-unit triangular.
  413. *
  414. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  415. * Initially, G(0) = max{x(i), i=1,...,n}.
  416. *
  417. GROW = HALF / MAX( XBND, SMLNUM )
  418. XBND = GROW
  419. DO 40 J = JFIRST, JLAST, JINC
  420. *
  421. * Exit the loop if the growth factor is too small.
  422. *
  423. IF( GROW.LE.SMLNUM )
  424. $ GO TO 60
  425. *
  426. TJJS = AB( MAIND, J )
  427. TJJ = CABS1( TJJS )
  428. *
  429. IF( TJJ.GE.SMLNUM ) THEN
  430. *
  431. * M(j) = G(j-1) / abs(A(j,j))
  432. *
  433. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  434. ELSE
  435. *
  436. * M(j) could overflow, set XBND to 0.
  437. *
  438. XBND = ZERO
  439. END IF
  440. *
  441. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  442. *
  443. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  444. *
  445. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  446. ELSE
  447. *
  448. * G(j) could overflow, set GROW to 0.
  449. *
  450. GROW = ZERO
  451. END IF
  452. 40 CONTINUE
  453. GROW = XBND
  454. ELSE
  455. *
  456. * A is unit triangular.
  457. *
  458. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  459. *
  460. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  461. DO 50 J = JFIRST, JLAST, JINC
  462. *
  463. * Exit the loop if the growth factor is too small.
  464. *
  465. IF( GROW.LE.SMLNUM )
  466. $ GO TO 60
  467. *
  468. * G(j) = G(j-1)*( 1 + CNORM(j) )
  469. *
  470. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  471. 50 CONTINUE
  472. END IF
  473. 60 CONTINUE
  474. *
  475. ELSE
  476. *
  477. * Compute the growth in A**T * x = b or A**H * x = b.
  478. *
  479. IF( UPPER ) THEN
  480. JFIRST = 1
  481. JLAST = N
  482. JINC = 1
  483. MAIND = KD + 1
  484. ELSE
  485. JFIRST = N
  486. JLAST = 1
  487. JINC = -1
  488. MAIND = 1
  489. END IF
  490. *
  491. IF( TSCAL.NE.ONE ) THEN
  492. GROW = ZERO
  493. GO TO 90
  494. END IF
  495. *
  496. IF( NOUNIT ) THEN
  497. *
  498. * A is non-unit triangular.
  499. *
  500. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  501. * Initially, M(0) = max{x(i), i=1,...,n}.
  502. *
  503. GROW = HALF / MAX( XBND, SMLNUM )
  504. XBND = GROW
  505. DO 70 J = JFIRST, JLAST, JINC
  506. *
  507. * Exit the loop if the growth factor is too small.
  508. *
  509. IF( GROW.LE.SMLNUM )
  510. $ GO TO 90
  511. *
  512. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  513. *
  514. XJ = ONE + CNORM( J )
  515. GROW = MIN( GROW, XBND / XJ )
  516. *
  517. TJJS = AB( MAIND, J )
  518. TJJ = CABS1( TJJS )
  519. *
  520. IF( TJJ.GE.SMLNUM ) THEN
  521. *
  522. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  523. *
  524. IF( XJ.GT.TJJ )
  525. $ XBND = XBND*( TJJ / XJ )
  526. ELSE
  527. *
  528. * M(j) could overflow, set XBND to 0.
  529. *
  530. XBND = ZERO
  531. END IF
  532. 70 CONTINUE
  533. GROW = MIN( GROW, XBND )
  534. ELSE
  535. *
  536. * A is unit triangular.
  537. *
  538. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  539. *
  540. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  541. DO 80 J = JFIRST, JLAST, JINC
  542. *
  543. * Exit the loop if the growth factor is too small.
  544. *
  545. IF( GROW.LE.SMLNUM )
  546. $ GO TO 90
  547. *
  548. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  549. *
  550. XJ = ONE + CNORM( J )
  551. GROW = GROW / XJ
  552. 80 CONTINUE
  553. END IF
  554. 90 CONTINUE
  555. END IF
  556. *
  557. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  558. *
  559. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  560. * elements of X is not too small.
  561. *
  562. CALL CTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  563. ELSE
  564. *
  565. * Use a Level 1 BLAS solve, scaling intermediate results.
  566. *
  567. IF( XMAX.GT.BIGNUM*HALF ) THEN
  568. *
  569. * Scale X so that its components are less than or equal to
  570. * BIGNUM in absolute value.
  571. *
  572. SCALE = ( BIGNUM*HALF ) / XMAX
  573. CALL CSSCAL( N, SCALE, X, 1 )
  574. XMAX = BIGNUM
  575. ELSE
  576. XMAX = XMAX*TWO
  577. END IF
  578. *
  579. IF( NOTRAN ) THEN
  580. *
  581. * Solve A * x = b
  582. *
  583. DO 110 J = JFIRST, JLAST, JINC
  584. *
  585. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  586. *
  587. XJ = CABS1( X( J ) )
  588. IF( NOUNIT ) THEN
  589. TJJS = AB( MAIND, J )*TSCAL
  590. ELSE
  591. TJJS = TSCAL
  592. IF( TSCAL.EQ.ONE )
  593. $ GO TO 105
  594. END IF
  595. TJJ = CABS1( TJJS )
  596. IF( TJJ.GT.SMLNUM ) THEN
  597. *
  598. * abs(A(j,j)) > SMLNUM:
  599. *
  600. IF( TJJ.LT.ONE ) THEN
  601. IF( XJ.GT.TJJ*BIGNUM ) THEN
  602. *
  603. * Scale x by 1/b(j).
  604. *
  605. REC = ONE / XJ
  606. CALL CSSCAL( N, REC, X, 1 )
  607. SCALE = SCALE*REC
  608. XMAX = XMAX*REC
  609. END IF
  610. END IF
  611. X( J ) = CLADIV( X( J ), TJJS )
  612. XJ = CABS1( X( J ) )
  613. ELSE IF( TJJ.GT.ZERO ) THEN
  614. *
  615. * 0 < abs(A(j,j)) <= SMLNUM:
  616. *
  617. IF( XJ.GT.TJJ*BIGNUM ) THEN
  618. *
  619. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  620. * to avoid overflow when dividing by A(j,j).
  621. *
  622. REC = ( TJJ*BIGNUM ) / XJ
  623. IF( CNORM( J ).GT.ONE ) THEN
  624. *
  625. * Scale by 1/CNORM(j) to avoid overflow when
  626. * multiplying x(j) times column j.
  627. *
  628. REC = REC / CNORM( J )
  629. END IF
  630. CALL CSSCAL( N, REC, X, 1 )
  631. SCALE = SCALE*REC
  632. XMAX = XMAX*REC
  633. END IF
  634. X( J ) = CLADIV( X( J ), TJJS )
  635. XJ = CABS1( X( J ) )
  636. ELSE
  637. *
  638. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  639. * scale = 0, and compute a solution to A*x = 0.
  640. *
  641. DO 100 I = 1, N
  642. X( I ) = ZERO
  643. 100 CONTINUE
  644. X( J ) = ONE
  645. XJ = ONE
  646. SCALE = ZERO
  647. XMAX = ZERO
  648. END IF
  649. 105 CONTINUE
  650. *
  651. * Scale x if necessary to avoid overflow when adding a
  652. * multiple of column j of A.
  653. *
  654. IF( XJ.GT.ONE ) THEN
  655. REC = ONE / XJ
  656. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  657. *
  658. * Scale x by 1/(2*abs(x(j))).
  659. *
  660. REC = REC*HALF
  661. CALL CSSCAL( N, REC, X, 1 )
  662. SCALE = SCALE*REC
  663. END IF
  664. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  665. *
  666. * Scale x by 1/2.
  667. *
  668. CALL CSSCAL( N, HALF, X, 1 )
  669. SCALE = SCALE*HALF
  670. END IF
  671. *
  672. IF( UPPER ) THEN
  673. IF( J.GT.1 ) THEN
  674. *
  675. * Compute the update
  676. * x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  677. * x(j)* A(max(1,j-kd):j-1,j)
  678. *
  679. JLEN = MIN( KD, J-1 )
  680. CALL CAXPY( JLEN, -X( J )*TSCAL,
  681. $ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  682. I = ICAMAX( J-1, X, 1 )
  683. XMAX = CABS1( X( I ) )
  684. END IF
  685. ELSE IF( J.LT.N ) THEN
  686. *
  687. * Compute the update
  688. * x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  689. * x(j) * A(j+1:min(j+kd,n),j)
  690. *
  691. JLEN = MIN( KD, N-J )
  692. IF( JLEN.GT.0 )
  693. $ CALL CAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  694. $ X( J+1 ), 1 )
  695. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  696. XMAX = CABS1( X( I ) )
  697. END IF
  698. 110 CONTINUE
  699. *
  700. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  701. *
  702. * Solve A**T * x = b
  703. *
  704. DO 150 J = JFIRST, JLAST, JINC
  705. *
  706. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  707. * k<>j
  708. *
  709. XJ = CABS1( X( J ) )
  710. USCAL = TSCAL
  711. REC = ONE / MAX( XMAX, ONE )
  712. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  713. *
  714. * If x(j) could overflow, scale x by 1/(2*XMAX).
  715. *
  716. REC = REC*HALF
  717. IF( NOUNIT ) THEN
  718. TJJS = AB( MAIND, J )*TSCAL
  719. ELSE
  720. TJJS = TSCAL
  721. END IF
  722. TJJ = CABS1( TJJS )
  723. IF( TJJ.GT.ONE ) THEN
  724. *
  725. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  726. *
  727. REC = MIN( ONE, REC*TJJ )
  728. USCAL = CLADIV( USCAL, TJJS )
  729. END IF
  730. IF( REC.LT.ONE ) THEN
  731. CALL CSSCAL( N, REC, X, 1 )
  732. SCALE = SCALE*REC
  733. XMAX = XMAX*REC
  734. END IF
  735. END IF
  736. *
  737. CSUMJ = ZERO
  738. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  739. *
  740. * If the scaling needed for A in the dot product is 1,
  741. * call CDOTU to perform the dot product.
  742. *
  743. IF( UPPER ) THEN
  744. JLEN = MIN( KD, J-1 )
  745. CSUMJ = CDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
  746. $ X( J-JLEN ), 1 )
  747. ELSE
  748. JLEN = MIN( KD, N-J )
  749. IF( JLEN.GT.1 )
  750. $ CSUMJ = CDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
  751. $ 1 )
  752. END IF
  753. ELSE
  754. *
  755. * Otherwise, use in-line code for the dot product.
  756. *
  757. IF( UPPER ) THEN
  758. JLEN = MIN( KD, J-1 )
  759. DO 120 I = 1, JLEN
  760. CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  761. $ X( J-JLEN-1+I )
  762. 120 CONTINUE
  763. ELSE
  764. JLEN = MIN( KD, N-J )
  765. DO 130 I = 1, JLEN
  766. CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  767. 130 CONTINUE
  768. END IF
  769. END IF
  770. *
  771. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  772. *
  773. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  774. * was not used to scale the dotproduct.
  775. *
  776. X( J ) = X( J ) - CSUMJ
  777. XJ = CABS1( X( J ) )
  778. IF( NOUNIT ) THEN
  779. *
  780. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  781. *
  782. TJJS = AB( MAIND, J )*TSCAL
  783. ELSE
  784. TJJS = TSCAL
  785. IF( TSCAL.EQ.ONE )
  786. $ GO TO 145
  787. END IF
  788. TJJ = CABS1( TJJS )
  789. IF( TJJ.GT.SMLNUM ) THEN
  790. *
  791. * abs(A(j,j)) > SMLNUM:
  792. *
  793. IF( TJJ.LT.ONE ) THEN
  794. IF( XJ.GT.TJJ*BIGNUM ) THEN
  795. *
  796. * Scale X by 1/abs(x(j)).
  797. *
  798. REC = ONE / XJ
  799. CALL CSSCAL( N, REC, X, 1 )
  800. SCALE = SCALE*REC
  801. XMAX = XMAX*REC
  802. END IF
  803. END IF
  804. X( J ) = CLADIV( X( J ), TJJS )
  805. ELSE IF( TJJ.GT.ZERO ) THEN
  806. *
  807. * 0 < abs(A(j,j)) <= SMLNUM:
  808. *
  809. IF( XJ.GT.TJJ*BIGNUM ) THEN
  810. *
  811. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  812. *
  813. REC = ( TJJ*BIGNUM ) / XJ
  814. CALL CSSCAL( N, REC, X, 1 )
  815. SCALE = SCALE*REC
  816. XMAX = XMAX*REC
  817. END IF
  818. X( J ) = CLADIV( X( J ), TJJS )
  819. ELSE
  820. *
  821. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  822. * scale = 0 and compute a solution to A**T *x = 0.
  823. *
  824. DO 140 I = 1, N
  825. X( I ) = ZERO
  826. 140 CONTINUE
  827. X( J ) = ONE
  828. SCALE = ZERO
  829. XMAX = ZERO
  830. END IF
  831. 145 CONTINUE
  832. ELSE
  833. *
  834. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  835. * product has already been divided by 1/A(j,j).
  836. *
  837. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  838. END IF
  839. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  840. 150 CONTINUE
  841. *
  842. ELSE
  843. *
  844. * Solve A**H * x = b
  845. *
  846. DO 190 J = JFIRST, JLAST, JINC
  847. *
  848. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  849. * k<>j
  850. *
  851. XJ = CABS1( X( J ) )
  852. USCAL = TSCAL
  853. REC = ONE / MAX( XMAX, ONE )
  854. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  855. *
  856. * If x(j) could overflow, scale x by 1/(2*XMAX).
  857. *
  858. REC = REC*HALF
  859. IF( NOUNIT ) THEN
  860. TJJS = CONJG( AB( MAIND, J ) )*TSCAL
  861. ELSE
  862. TJJS = TSCAL
  863. END IF
  864. TJJ = CABS1( TJJS )
  865. IF( TJJ.GT.ONE ) THEN
  866. *
  867. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  868. *
  869. REC = MIN( ONE, REC*TJJ )
  870. USCAL = CLADIV( USCAL, TJJS )
  871. END IF
  872. IF( REC.LT.ONE ) THEN
  873. CALL CSSCAL( N, REC, X, 1 )
  874. SCALE = SCALE*REC
  875. XMAX = XMAX*REC
  876. END IF
  877. END IF
  878. *
  879. CSUMJ = ZERO
  880. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  881. *
  882. * If the scaling needed for A in the dot product is 1,
  883. * call CDOTC to perform the dot product.
  884. *
  885. IF( UPPER ) THEN
  886. JLEN = MIN( KD, J-1 )
  887. CSUMJ = CDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
  888. $ X( J-JLEN ), 1 )
  889. ELSE
  890. JLEN = MIN( KD, N-J )
  891. IF( JLEN.GT.1 )
  892. $ CSUMJ = CDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
  893. $ 1 )
  894. END IF
  895. ELSE
  896. *
  897. * Otherwise, use in-line code for the dot product.
  898. *
  899. IF( UPPER ) THEN
  900. JLEN = MIN( KD, J-1 )
  901. DO 160 I = 1, JLEN
  902. CSUMJ = CSUMJ + ( CONJG( AB( KD+I-JLEN, J ) )*
  903. $ USCAL )*X( J-JLEN-1+I )
  904. 160 CONTINUE
  905. ELSE
  906. JLEN = MIN( KD, N-J )
  907. DO 170 I = 1, JLEN
  908. CSUMJ = CSUMJ + ( CONJG( AB( I+1, J ) )*USCAL )*
  909. $ X( J+I )
  910. 170 CONTINUE
  911. END IF
  912. END IF
  913. *
  914. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  915. *
  916. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  917. * was not used to scale the dotproduct.
  918. *
  919. X( J ) = X( J ) - CSUMJ
  920. XJ = CABS1( X( J ) )
  921. IF( NOUNIT ) THEN
  922. *
  923. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  924. *
  925. TJJS = CONJG( AB( MAIND, J ) )*TSCAL
  926. ELSE
  927. TJJS = TSCAL
  928. IF( TSCAL.EQ.ONE )
  929. $ GO TO 185
  930. END IF
  931. TJJ = CABS1( TJJS )
  932. IF( TJJ.GT.SMLNUM ) THEN
  933. *
  934. * abs(A(j,j)) > SMLNUM:
  935. *
  936. IF( TJJ.LT.ONE ) THEN
  937. IF( XJ.GT.TJJ*BIGNUM ) THEN
  938. *
  939. * Scale X by 1/abs(x(j)).
  940. *
  941. REC = ONE / XJ
  942. CALL CSSCAL( N, REC, X, 1 )
  943. SCALE = SCALE*REC
  944. XMAX = XMAX*REC
  945. END IF
  946. END IF
  947. X( J ) = CLADIV( X( J ), TJJS )
  948. ELSE IF( TJJ.GT.ZERO ) THEN
  949. *
  950. * 0 < abs(A(j,j)) <= SMLNUM:
  951. *
  952. IF( XJ.GT.TJJ*BIGNUM ) THEN
  953. *
  954. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  955. *
  956. REC = ( TJJ*BIGNUM ) / XJ
  957. CALL CSSCAL( N, REC, X, 1 )
  958. SCALE = SCALE*REC
  959. XMAX = XMAX*REC
  960. END IF
  961. X( J ) = CLADIV( X( J ), TJJS )
  962. ELSE
  963. *
  964. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  965. * scale = 0 and compute a solution to A**H *x = 0.
  966. *
  967. DO 180 I = 1, N
  968. X( I ) = ZERO
  969. 180 CONTINUE
  970. X( J ) = ONE
  971. SCALE = ZERO
  972. XMAX = ZERO
  973. END IF
  974. 185 CONTINUE
  975. ELSE
  976. *
  977. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  978. * product has already been divided by 1/A(j,j).
  979. *
  980. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  981. END IF
  982. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  983. 190 CONTINUE
  984. END IF
  985. SCALE = SCALE / TSCAL
  986. END IF
  987. *
  988. * Scale the column norms by 1/TSCAL for return.
  989. *
  990. IF( TSCAL.NE.ONE ) THEN
  991. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  992. END IF
  993. *
  994. RETURN
  995. *
  996. * End of CLATBS
  997. *
  998. END