You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemqr.f 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. *> \brief \b CGEMQR
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T,
  7. * $ TSIZE, C, LDC, WORK, LWORK, INFO )
  8. *
  9. *
  10. * .. Scalar Arguments ..
  11. * CHARACTER SIDE, TRANS
  12. * INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
  13. * ..
  14. * .. Array Arguments ..
  15. * COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
  16. * ..
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> CGEMQR overwrites the general real M-by-N matrix C with
  24. *>
  25. *> SIDE = 'L' SIDE = 'R'
  26. *> TRANS = 'N': Q * C C * Q
  27. *> TRANS = 'T': Q**H * C C * Q**H
  28. *>
  29. *> where Q is a complex unitary matrix defined as the product
  30. *> of blocked elementary reflectors computed by tall skinny
  31. *> QR factorization (CGEQR)
  32. *>
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] SIDE
  39. *> \verbatim
  40. *> SIDE is CHARACTER*1
  41. *> = 'L': apply Q or Q**T from the Left;
  42. *> = 'R': apply Q or Q**T from the Right.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] TRANS
  46. *> \verbatim
  47. *> TRANS is CHARACTER*1
  48. *> = 'N': No transpose, apply Q;
  49. *> = 'T': Transpose, apply Q**T.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A. M >=0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of the matrix C. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] K
  65. *> \verbatim
  66. *> K is INTEGER
  67. *> The number of elementary reflectors whose product defines
  68. *> the matrix Q.
  69. *> If SIDE = 'L', M >= K >= 0;
  70. *> if SIDE = 'R', N >= K >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] A
  74. *> \verbatim
  75. *> A is COMPLEX array, dimension (LDA,K)
  76. *> Part of the data structure to represent Q as returned by CGEQR.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> The leading dimension of the array A.
  83. *> If SIDE = 'L', LDA >= max(1,M);
  84. *> if SIDE = 'R', LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] T
  88. *> \verbatim
  89. *> T is COMPLEX array, dimension (MAX(5,TSIZE)).
  90. *> Part of the data structure to represent Q as returned by CGEQR.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] TSIZE
  94. *> \verbatim
  95. *> TSIZE is INTEGER
  96. *> The dimension of the array T. TSIZE >= 5.
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] C
  100. *> \verbatim
  101. *> C is COMPLEX array, dimension (LDC,N)
  102. *> On entry, the M-by-N matrix C.
  103. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDC
  107. *> \verbatim
  108. *> LDC is INTEGER
  109. *> The leading dimension of the array C. LDC >= max(1,M).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] WORK
  113. *> \verbatim
  114. *> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LWORK
  118. *> \verbatim
  119. *> LWORK is INTEGER
  120. *> The dimension of the array WORK.
  121. *> If LWORK = -1, then a workspace query is assumed. The routine
  122. *> only calculates the size of the WORK array, returns this
  123. *> value as WORK(1), and no error message related to WORK
  124. *> is issued by XERBLA.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] INFO
  128. *> \verbatim
  129. *> INFO is INTEGER
  130. *> = 0: successful exit
  131. *> < 0: if INFO = -i, the i-th argument had an illegal value
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \par Further Details
  143. * ====================
  144. *>
  145. *> \verbatim
  146. *>
  147. *> These details are particular for this LAPACK implementation. Users should not
  148. *> take them for granted. These details may change in the future, and are not likely
  149. *> true for another LAPACK implementation. These details are relevant if one wants
  150. *> to try to understand the code. They are not part of the interface.
  151. *>
  152. *> In this version,
  153. *>
  154. *> T(2): row block size (MB)
  155. *> T(3): column block size (NB)
  156. *> T(6:TSIZE): data structure needed for Q, computed by
  157. *> CLATSQR or CGEQRT
  158. *>
  159. *> Depending on the matrix dimensions M and N, and row and column
  160. *> block sizes MB and NB returned by ILAENV, CGEQR will use either
  161. *> CLATSQR (if the matrix is tall-and-skinny) or CGEQRT to compute
  162. *> the QR factorization.
  163. *> This version of CGEMQR will use either CLAMTSQR or CGEMQRT to
  164. *> multiply matrix Q by another matrix.
  165. *> Further Details in CLAMTSQR or CGEMQRT.
  166. *>
  167. *> \endverbatim
  168. *>
  169. * =====================================================================
  170. SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
  171. $ C, LDC, WORK, LWORK, INFO )
  172. *
  173. * -- LAPACK computational routine (version 3.7.0) --
  174. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  175. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176. * December 2016
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER SIDE, TRANS
  180. INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
  181. * ..
  182. * .. Array Arguments ..
  183. COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  191. INTEGER MB, NB, LW, NBLCKS, MN
  192. * ..
  193. * .. External Functions ..
  194. LOGICAL LSAME
  195. EXTERNAL LSAME
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL CGEMQRT, CLAMTSQR, XERBLA
  199. * ..
  200. * .. Intrinsic Functions ..
  201. INTRINSIC INT, MAX, MIN, MOD
  202. * ..
  203. * .. Executable Statements ..
  204. *
  205. * Test the input arguments
  206. *
  207. LQUERY = LWORK.EQ.-1
  208. NOTRAN = LSAME( TRANS, 'N' )
  209. TRAN = LSAME( TRANS, 'C' )
  210. LEFT = LSAME( SIDE, 'L' )
  211. RIGHT = LSAME( SIDE, 'R' )
  212. *
  213. MB = INT( T( 2 ) )
  214. NB = INT( T( 3 ) )
  215. IF( LEFT ) THEN
  216. LW = N * NB
  217. MN = M
  218. ELSE
  219. LW = MB * NB
  220. MN = N
  221. END IF
  222. *
  223. IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN
  224. IF( MOD( MN - K, MB - K ).EQ.0 ) THEN
  225. NBLCKS = ( MN - K ) / ( MB - K )
  226. ELSE
  227. NBLCKS = ( MN - K ) / ( MB - K ) + 1
  228. END IF
  229. ELSE
  230. NBLCKS = 1
  231. END IF
  232. *
  233. INFO = 0
  234. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  235. INFO = -1
  236. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  237. INFO = -2
  238. ELSE IF( M.LT.0 ) THEN
  239. INFO = -3
  240. ELSE IF( N.LT.0 ) THEN
  241. INFO = -4
  242. ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN
  243. INFO = -5
  244. ELSE IF( LDA.LT.MAX( 1, MN ) ) THEN
  245. INFO = -7
  246. ELSE IF( TSIZE.LT.5 ) THEN
  247. INFO = -9
  248. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  249. INFO = -11
  250. ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
  251. INFO = -13
  252. END IF
  253. *
  254. IF( INFO.EQ.0 ) THEN
  255. WORK( 1 ) = LW
  256. END IF
  257. *
  258. IF( INFO.NE.0 ) THEN
  259. CALL XERBLA( 'CGEMQR', -INFO )
  260. RETURN
  261. ELSE IF( LQUERY ) THEN
  262. RETURN
  263. END IF
  264. *
  265. * Quick return if possible
  266. *
  267. IF( MIN( M, N, K ).EQ.0 ) THEN
  268. RETURN
  269. END IF
  270. *
  271. IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K )
  272. $ .OR. ( MB.LE.K ) .OR. ( MB.GE.MAX( M, N, K ) ) ) THEN
  273. CALL CGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, T( 6 ),
  274. $ NB, C, LDC, WORK, INFO )
  275. ELSE
  276. CALL CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ),
  277. $ NB, C, LDC, WORK, LWORK, INFO )
  278. END IF
  279. *
  280. WORK( 1 ) = LW
  281. *
  282. RETURN
  283. *
  284. * End of CGEMQR
  285. *
  286. END