You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

potrf_parallel.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. #ifndef USE_SIMPLE_THREADED_LEVEL3
  41. //The array of job_t may overflow the stack.
  42. //Instead, use malloc to alloc job_t.
  43. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  44. #define USE_ALLOC_HEAP
  45. #endif
  46. static FLOAT dm1 = -1.;
  47. #ifndef KERNEL_FUNC
  48. #ifndef LOWER
  49. #define KERNEL_FUNC SYRK_KERNEL_U
  50. #else
  51. #define KERNEL_FUNC SYRK_KERNEL_L
  52. #endif
  53. #endif
  54. #ifndef LOWER
  55. #ifndef COMPLEX
  56. #define TRSM_KERNEL TRSM_KERNEL_LT
  57. #else
  58. #define TRSM_KERNEL TRSM_KERNEL_LC
  59. #endif
  60. #else
  61. #ifndef COMPLEX
  62. #define TRSM_KERNEL TRSM_KERNEL_RN
  63. #else
  64. #define TRSM_KERNEL TRSM_KERNEL_RR
  65. #endif
  66. #endif
  67. #ifndef CACHE_LINE_SIZE
  68. #define CACHE_LINE_SIZE 8
  69. #endif
  70. #ifndef DIVIDE_RATE
  71. #define DIVIDE_RATE 2
  72. #endif
  73. #ifndef LOWER
  74. #define TRANS
  75. #endif
  76. #ifndef SYRK_LOCAL
  77. #if !defined(LOWER) && !defined(TRANS)
  78. #define SYRK_LOCAL SYRK_UN
  79. #elif !defined(LOWER) && defined(TRANS)
  80. #define SYRK_LOCAL SYRK_UT
  81. #elif defined(LOWER) && !defined(TRANS)
  82. #define SYRK_LOCAL SYRK_LN
  83. #else
  84. #define SYRK_LOCAL SYRK_LT
  85. #endif
  86. #endif
  87. typedef struct {
  88. #ifdef HAVE_C11
  89. _Atomic
  90. #else
  91. volatile
  92. #endif
  93. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  94. } job_t;
  95. #ifndef KERNEL_OPERATION
  96. #ifndef COMPLEX
  97. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  98. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  99. #else
  100. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  101. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  102. #endif
  103. #endif
  104. #ifndef ICOPY_OPERATION
  105. #ifndef TRANS
  106. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  107. #else
  108. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  109. #endif
  110. #endif
  111. #ifndef OCOPY_OPERATION
  112. #ifdef TRANS
  113. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  114. #else
  115. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  116. #endif
  117. #endif
  118. #ifndef S
  119. #define S args -> a
  120. #endif
  121. #ifndef A
  122. #define A args -> b
  123. #endif
  124. #ifndef C
  125. #define C args -> c
  126. #endif
  127. #ifndef LDA
  128. #define LDA args -> lda
  129. #endif
  130. #ifndef N
  131. #define N args -> m
  132. #endif
  133. #ifndef K
  134. #define K args -> k
  135. #endif
  136. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  137. FLOAT *buffer[DIVIDE_RATE];
  138. BLASLONG k, lda;
  139. BLASLONG m_from, m_to;
  140. FLOAT *alpha;
  141. FLOAT *a, *c;
  142. job_t *job = (job_t *)args -> common;
  143. BLASLONG xxx, bufferside;
  144. BLASLONG jjs, min_jj;
  145. BLASLONG is, min_i, div_n;
  146. BLASLONG i, current;
  147. k = K;
  148. a = (FLOAT *)A;
  149. c = (FLOAT *)C;
  150. lda = LDA;
  151. alpha = (FLOAT *)args -> alpha;
  152. m_from = range_n[mypos + 0];
  153. m_to = range_n[mypos + 1];
  154. #if 0
  155. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to);
  156. #endif
  157. div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  158. buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  159. for (i = 1; i < DIVIDE_RATE; i++) {
  160. buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
  161. }
  162. #ifndef LOWER
  163. TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  164. #else
  165. TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  166. #endif
  167. for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
  168. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  169. min_jj = MIN(m_to, xxx + div_n) - jjs;
  170. #ifndef LOWER
  171. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  172. #else
  173. if (min_jj > GEMM_P) min_jj = GEMM_P;
  174. #endif
  175. #ifndef LOWER
  176. OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  177. TRSM_KERNEL (k, min_jj, k, dm1,
  178. #ifdef COMPLEX
  179. ZERO,
  180. #endif
  181. sb,
  182. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  183. a + jjs * lda * COMPSIZE, lda, 0);
  184. #else
  185. ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  186. TRSM_KERNEL (min_jj, k, k, dm1,
  187. #ifdef COMPLEX
  188. ZERO,
  189. #endif
  190. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  191. sb,
  192. a + jjs * COMPSIZE, lda, 0);
  193. #endif
  194. }
  195. #ifndef LOWER
  196. for (i = 0; i <= mypos; i++)
  197. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  198. #else
  199. for (i = mypos; i < args -> nthreads; i++)
  200. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  201. #endif
  202. WMB;
  203. }
  204. min_i = m_to - m_from;
  205. if (min_i >= GEMM_P * 2) {
  206. min_i = GEMM_P;
  207. } else
  208. if (min_i > GEMM_P) {
  209. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  210. }
  211. #ifndef LOWER
  212. ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  213. #else
  214. OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  215. #endif
  216. current = mypos;
  217. #ifndef LOWER
  218. while (current < args -> nthreads)
  219. #else
  220. while (current >= 0)
  221. #endif
  222. {
  223. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  224. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  225. /* thread has to wait */
  226. if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  227. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  228. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  229. c, lda, m_from, xxx);
  230. if (m_from + min_i >= m_to) {
  231. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  232. WMB;
  233. }
  234. }
  235. #ifndef LOWER
  236. current ++;
  237. #else
  238. current --;
  239. #endif
  240. }
  241. for(is = m_from + min_i; is < m_to; is += min_i){
  242. min_i = m_to - is;
  243. if (min_i >= GEMM_P * 2) {
  244. min_i = GEMM_P;
  245. } else
  246. if (min_i > GEMM_P) {
  247. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  248. }
  249. #ifndef LOWER
  250. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  251. #else
  252. OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  253. #endif
  254. current = mypos;
  255. #ifndef LOWER
  256. while (current < args -> nthreads)
  257. #else
  258. while (current >= 0)
  259. #endif
  260. {
  261. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  262. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  263. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  264. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  265. c, lda, is, xxx);
  266. if (is + min_i >= m_to) {
  267. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  268. WMB;
  269. }
  270. }
  271. #ifndef LOWER
  272. current ++;
  273. #else
  274. current --;
  275. #endif
  276. }
  277. }
  278. for (i = 0; i < args -> nthreads; i++) {
  279. if (i != mypos) {
  280. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  281. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  282. }
  283. }
  284. }
  285. return 0;
  286. }
  287. static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){
  288. blas_arg_t newarg;
  289. #ifndef USE_ALLOC_HEAP
  290. job_t job[MAX_CPU_NUMBER];
  291. #else
  292. job_t * job = NULL;
  293. #endif
  294. blas_queue_t queue[MAX_CPU_NUMBER];
  295. BLASLONG range[MAX_CPU_NUMBER + 100];
  296. BLASLONG num_cpu;
  297. BLASLONG nthreads = args -> nthreads;
  298. BLASLONG width, i, j, k;
  299. BLASLONG n, n_from, n_to;
  300. int mode, mask;
  301. double dnum;
  302. #ifndef COMPLEX
  303. #ifdef XDOUBLE
  304. mode = BLAS_XDOUBLE | BLAS_REAL;
  305. mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
  306. #elif defined(DOUBLE)
  307. mode = BLAS_DOUBLE | BLAS_REAL;
  308. mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1;
  309. #elif defined(HALF)
  310. mode = BLAS_HALF | BLAS_REAL;
  311. mask = MAX(SBGEMM_UNROLL_M, SBGEMM_UNROLL_N) - 1;
  312. #else
  313. mode = BLAS_SINGLE | BLAS_REAL;
  314. mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1;
  315. #endif
  316. #else
  317. #ifdef XDOUBLE
  318. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  319. mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
  320. #elif defined(DOUBLE)
  321. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  322. mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1;
  323. #else
  324. mode = BLAS_SINGLE | BLAS_COMPLEX;
  325. mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1;
  326. #endif
  327. #endif
  328. newarg.m = args -> m;
  329. newarg.k = args -> k;
  330. newarg.a = args -> a;
  331. newarg.b = args -> b;
  332. newarg.c = args -> c;
  333. newarg.lda = args -> lda;
  334. newarg.alpha = args -> alpha;
  335. #ifdef USE_ALLOC_HEAP
  336. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  337. if(job==NULL){
  338. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  339. exit(1);
  340. }
  341. #endif
  342. newarg.common = (void *)job;
  343. n_from = 0;
  344. n_to = args -> m;
  345. #ifndef LOWER
  346. range[MAX_CPU_NUMBER] = n_to - n_from;
  347. range[0] = 0;
  348. num_cpu = 0;
  349. i = 0;
  350. n = n_to - n_from;
  351. dnum = (double)n * (double)n /(double)nthreads;
  352. while (i < n){
  353. if (nthreads - num_cpu > 1) {
  354. double di = (double)i;
  355. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  356. if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1));
  357. if ((width > n - i) || (width < mask)) width = n - i;
  358. } else {
  359. width = n - i;
  360. }
  361. range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
  362. queue[num_cpu].mode = mode;
  363. queue[num_cpu].routine = inner_thread;
  364. queue[num_cpu].args = &newarg;
  365. queue[num_cpu].range_m = NULL;
  366. queue[num_cpu].sa = NULL;
  367. queue[num_cpu].sb = NULL;
  368. queue[num_cpu].next = &queue[num_cpu + 1];
  369. num_cpu ++;
  370. i += width;
  371. }
  372. for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
  373. #else
  374. range[0] = 0;
  375. num_cpu = 0;
  376. i = 0;
  377. n = n_to - n_from;
  378. dnum = (double)n * (double)n /(double)nthreads;
  379. while (i < n){
  380. if (nthreads - num_cpu > 1) {
  381. double di = (double)i;
  382. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  383. if ((width > n - i) || (width < mask)) width = n - i;
  384. } else {
  385. width = n - i;
  386. }
  387. range[num_cpu + 1] = range[num_cpu] + width;
  388. queue[num_cpu].mode = mode;
  389. queue[num_cpu].routine = inner_thread;
  390. queue[num_cpu].args = &newarg;
  391. queue[num_cpu].range_m = NULL;
  392. queue[num_cpu].range_n = range;
  393. queue[num_cpu].sa = NULL;
  394. queue[num_cpu].sb = NULL;
  395. queue[num_cpu].next = &queue[num_cpu + 1];
  396. num_cpu ++;
  397. i += width;
  398. }
  399. #endif
  400. newarg.nthreads = num_cpu;
  401. if (num_cpu) {
  402. for (j = 0; j < num_cpu; j++) {
  403. for (i = 0; i < num_cpu; i++) {
  404. for (k = 0; k < DIVIDE_RATE; k++) {
  405. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  406. }
  407. }
  408. }
  409. queue[0].sa = sa;
  410. queue[0].sb = sb;
  411. queue[num_cpu - 1].next = NULL;
  412. exec_blas(num_cpu, queue);
  413. }
  414. #ifdef USE_ALLOC_HEAP
  415. free(job);
  416. #endif
  417. return 0;
  418. }
  419. #endif
  420. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  421. BLASLONG n, bk, i, blocking, lda;
  422. BLASLONG info;
  423. int mode;
  424. blas_arg_t newarg;
  425. FLOAT *a;
  426. FLOAT alpha[2] = { -ONE, ZERO};
  427. #ifndef COMPLEX
  428. #ifdef XDOUBLE
  429. mode = BLAS_XDOUBLE | BLAS_REAL;
  430. #elif defined(DOUBLE)
  431. mode = BLAS_DOUBLE | BLAS_REAL;
  432. #else
  433. mode = BLAS_SINGLE | BLAS_REAL;
  434. #endif
  435. #else
  436. #ifdef XDOUBLE
  437. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  438. #elif defined(DOUBLE)
  439. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  440. #else
  441. mode = BLAS_SINGLE | BLAS_COMPLEX;
  442. #endif
  443. #endif
  444. if (args -> nthreads == 1) {
  445. #ifndef LOWER
  446. info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0);
  447. #else
  448. info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0);
  449. #endif
  450. return info;
  451. }
  452. n = args -> n;
  453. a = (FLOAT *)args -> a;
  454. lda = args -> lda;
  455. if (range_n) n = range_n[1] - range_n[0];
  456. if (n <= GEMM_UNROLL_N * 2) {
  457. #ifndef LOWER
  458. info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0);
  459. #else
  460. info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0);
  461. #endif
  462. return info;
  463. }
  464. newarg.lda = lda;
  465. newarg.ldb = lda;
  466. newarg.ldc = lda;
  467. newarg.alpha = alpha;
  468. newarg.beta = NULL;
  469. newarg.nthreads = args -> nthreads;
  470. blocking = ((n / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  471. if (blocking > GEMM_Q) blocking = GEMM_Q;
  472. for (i = 0; i < n; i += blocking) {
  473. bk = n - i;
  474. if (bk > blocking) bk = blocking;
  475. newarg.m = bk;
  476. newarg.n = bk;
  477. newarg.a = a + (i + i * lda) * COMPSIZE;
  478. info = CNAME(&newarg, NULL, NULL, sa, sb, 0);
  479. if (info) return info + i;
  480. if (n - i - bk > 0) {
  481. #ifndef USE_SIMPLE_THREADED_LEVEL3
  482. newarg.m = n - i - bk;
  483. newarg.k = bk;
  484. #ifndef LOWER
  485. newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE;
  486. #else
  487. newarg.b = a + ((i + bk) + i * lda) * COMPSIZE;
  488. #endif
  489. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  490. thread_driver(&newarg, sa, sb);
  491. #else
  492. #ifndef LOWER
  493. newarg.m = bk;
  494. newarg.n = n - i - bk;
  495. newarg.a = a + (i + i * lda) * COMPSIZE;
  496. newarg.b = a + (i + (i + bk) * lda) * COMPSIZE;
  497. gemm_thread_n(mode | BLAS_TRANSA_T,
  498. &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads);
  499. newarg.n = n - i - bk;
  500. newarg.k = bk;
  501. newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE;
  502. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  503. #if 0
  504. HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0);
  505. #else
  506. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T,
  507. &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads);
  508. #endif
  509. #else
  510. newarg.m = n - i - bk;
  511. newarg.n = bk;
  512. newarg.a = a + (i + i * lda) * COMPSIZE;
  513. newarg.b = a + (i + bk + i * lda) * COMPSIZE;
  514. gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO,
  515. &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads);
  516. newarg.n = n - i - bk;
  517. newarg.k = bk;
  518. newarg.a = a + (i + bk + i * lda) * COMPSIZE;
  519. newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE;
  520. #if 0
  521. HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0);
  522. #else
  523. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO,
  524. &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads);
  525. #endif
  526. #endif
  527. #endif
  528. }
  529. }
  530. return 0;
  531. }