You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgelst.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static integer c__1 = 1;
  488. static integer c_n1 = -1;
  489. static integer c__2 = 2;
  490. static integer c__0 = 0;
  491. /* > \brief <b> ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factori
  492. zation with compact WY representation of Q.</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download ZGELST + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelst.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelst.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelst.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, */
  511. /* INFO ) */
  512. /* CHARACTER TRANS */
  513. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
  514. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > ZGELST solves overdetermined or underdetermined real linear systems */
  521. /* > involving an M-by-N matrix A, or its conjugate-transpose, using a QR */
  522. /* > or LQ factorization of A with compact WY representation of Q. */
  523. /* > It is assumed that A has full rank. */
  524. /* > */
  525. /* > The following options are provided: */
  526. /* > */
  527. /* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
  528. /* > an overdetermined system, i.e., solve the least squares problem */
  529. /* > minimize || B - A*X ||. */
  530. /* > */
  531. /* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
  532. /* > an underdetermined system A * X = B. */
  533. /* > */
  534. /* > 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */
  535. /* > an underdetermined system A**T * X = B. */
  536. /* > */
  537. /* > 4. If TRANS = 'C' and m < n: find the least squares solution of */
  538. /* > an overdetermined system, i.e., solve the least squares problem */
  539. /* > minimize || B - A**T * X ||. */
  540. /* > */
  541. /* > Several right hand side vectors b and solution vectors x can be */
  542. /* > handled in a single call; they are stored as the columns of the */
  543. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  544. /* > matrix X. */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] TRANS */
  549. /* > \verbatim */
  550. /* > TRANS is CHARACTER*1 */
  551. /* > = 'N': the linear system involves A; */
  552. /* > = 'C': the linear system involves A**H. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] M */
  556. /* > \verbatim */
  557. /* > M is INTEGER */
  558. /* > The number of rows of the matrix A. M >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The number of columns of the matrix A. N >= 0. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] NRHS */
  568. /* > \verbatim */
  569. /* > NRHS is INTEGER */
  570. /* > The number of right hand sides, i.e., the number of */
  571. /* > columns of the matrices B and X. NRHS >=0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] A */
  575. /* > \verbatim */
  576. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  577. /* > On entry, the M-by-N matrix A. */
  578. /* > On exit, */
  579. /* > if M >= N, A is overwritten by details of its QR */
  580. /* > factorization as returned by ZGEQRT; */
  581. /* > if M < N, A is overwritten by details of its LQ */
  582. /* > factorization as returned by ZGELQT. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDA */
  586. /* > \verbatim */
  587. /* > LDA is INTEGER */
  588. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] B */
  592. /* > \verbatim */
  593. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  594. /* > On entry, the matrix B of right hand side vectors, stored */
  595. /* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
  596. /* > if TRANS = 'C'. */
  597. /* > On exit, if INFO = 0, B is overwritten by the solution */
  598. /* > vectors, stored columnwise: */
  599. /* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
  600. /* > squares solution vectors; the residual sum of squares for the */
  601. /* > solution in each column is given by the sum of squares of */
  602. /* > modulus of elements N+1 to M in that column; */
  603. /* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
  604. /* > minimum norm solution vectors; */
  605. /* > if TRANS = 'C' and m >= n, rows 1 to M of B contain the */
  606. /* > minimum norm solution vectors; */
  607. /* > if TRANS = 'C' and m < n, rows 1 to M of B contain the */
  608. /* > least squares solution vectors; the residual sum of squares */
  609. /* > for the solution in each column is given by the sum of */
  610. /* > squares of the modulus of elements M+1 to N in that column. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDB */
  614. /* > \verbatim */
  615. /* > LDB is INTEGER */
  616. /* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] WORK */
  620. /* > \verbatim */
  621. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  622. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] LWORK */
  626. /* > \verbatim */
  627. /* > LWORK is INTEGER */
  628. /* > The dimension of the array WORK. */
  629. /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS ) ). */
  630. /* > For optimal performance, */
  631. /* > LWORK >= f2cmax( 1, (MN + f2cmax( MN, NRHS ))*NB ). */
  632. /* > where MN = f2cmin(M,N) and NB is the optimum block size. */
  633. /* > */
  634. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  635. /* > only calculates the optimal size of the WORK array, returns */
  636. /* > this value as the first entry of the WORK array, and no error */
  637. /* > message related to LWORK is issued by XERBLA. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] INFO */
  641. /* > \verbatim */
  642. /* > INFO is INTEGER */
  643. /* > = 0: successful exit */
  644. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  645. /* > > 0: if INFO = i, the i-th diagonal element of the */
  646. /* > triangular factor of A is zero, so that A does not have */
  647. /* > full rank; the least squares solution could not be */
  648. /* > computed. */
  649. /* > \endverbatim */
  650. /* Authors: */
  651. /* ======== */
  652. /* > \author Univ. of Tennessee */
  653. /* > \author Univ. of California Berkeley */
  654. /* > \author Univ. of Colorado Denver */
  655. /* > \author NAG Ltd. */
  656. /* > \ingroup complex16GEsolve */
  657. /* > \par Contributors: */
  658. /* ================== */
  659. /* > */
  660. /* > \verbatim */
  661. /* > */
  662. /* > November 2022, Igor Kozachenko, */
  663. /* > Computer Science Division, */
  664. /* > University of California, Berkeley */
  665. /* > \endverbatim */
  666. /* ===================================================================== */
  667. /* Subroutine */ void zgelst_(char *trans, integer *m, integer *n, integer *
  668. nrhs, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  669. doublecomplex *work, integer *lwork, integer *info)
  670. {
  671. /* System generated locals */
  672. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  673. doublereal d__1;
  674. /* Local variables */
  675. doublereal anrm, bnrm;
  676. integer brow;
  677. logical tpsd;
  678. integer i__, j, iascl, ibscl;
  679. extern logical lsame_(char *, char *);
  680. integer nbmin;
  681. doublereal rwork[1];
  682. integer lwopt;
  683. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  684. integer nb;
  685. extern doublereal dlamch_(char *);
  686. integer mn;
  687. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  688. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  689. integer *, integer *, ftnlen, ftnlen);
  690. integer scllen;
  691. doublereal bignum;
  692. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  693. integer *, doublereal *);
  694. extern /* Subroutine */ void zlascl_(char *, integer *, integer *,
  695. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  696. integer *, integer *), zlaset_(char *, integer *,
  697. integer *, doublecomplex *, doublecomplex *, doublecomplex *,
  698. integer *);
  699. integer mnnrhs;
  700. extern /* Subroutine */ void zgelqt_(integer *, integer *, integer *,
  701. doublecomplex *, integer *, doublecomplex *, integer *,
  702. doublecomplex *, integer *);
  703. doublereal smlnum;
  704. extern /* Subroutine */ void zgeqrt_(integer *, integer *, integer *,
  705. doublecomplex *, integer *, doublecomplex *, integer *,
  706. doublecomplex *, integer *);
  707. logical lquery;
  708. extern /* Subroutine */ int ztrtrs_(char *, char *, char *, integer *,
  709. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  710. integer *);
  711. extern void zgemlqt_(char *, char *,
  712. integer *, integer *, integer *, integer *, doublecomplex *,
  713. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  714. doublecomplex *, integer *), zgemqrt_(char *,
  715. char *, integer *, integer *, integer *, integer *, doublecomplex
  716. *, integer *, doublecomplex *, integer *, doublecomplex *,
  717. integer *, doublecomplex *, integer *);
  718. /* -- LAPACK driver routine -- */
  719. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  720. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  721. /* ===================================================================== */
  722. /* Test the input arguments. */
  723. /* Parameter adjustments */
  724. a_dim1 = *lda;
  725. a_offset = 1 + a_dim1 * 1;
  726. a -= a_offset;
  727. b_dim1 = *ldb;
  728. b_offset = 1 + b_dim1 * 1;
  729. b -= b_offset;
  730. --work;
  731. /* Function Body */
  732. *info = 0;
  733. mn = f2cmin(*m,*n);
  734. lquery = *lwork == -1;
  735. if (! (lsame_(trans, "N") || lsame_(trans, "C"))) {
  736. *info = -1;
  737. } else if (*m < 0) {
  738. *info = -2;
  739. } else if (*n < 0) {
  740. *info = -3;
  741. } else if (*nrhs < 0) {
  742. *info = -4;
  743. } else if (*lda < f2cmax(1,*m)) {
  744. *info = -6;
  745. } else /* if(complicated condition) */ {
  746. /* Computing MAX */
  747. i__1 = f2cmax(1,*m);
  748. if (*ldb < f2cmax(i__1,*n)) {
  749. *info = -8;
  750. } else /* if(complicated condition) */ {
  751. /* Computing MAX */
  752. i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs);
  753. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  754. *info = -10;
  755. }
  756. }
  757. }
  758. /* Figure out optimal block size and optimal workspace size */
  759. if (*info == 0 || *info == -10) {
  760. tpsd = TRUE_;
  761. if (lsame_(trans, "N")) {
  762. tpsd = FALSE_;
  763. }
  764. nb = ilaenv_(&c__1, "ZGELST", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
  765. ftnlen)1);
  766. mnnrhs = f2cmax(mn,*nrhs);
  767. /* Computing MAX */
  768. i__1 = 1, i__2 = (mn + mnnrhs) * nb;
  769. lwopt = f2cmax(i__1,i__2);
  770. d__1 = (doublereal) lwopt;
  771. work[1].r = d__1, work[1].i = 0.;
  772. }
  773. if (*info != 0) {
  774. i__1 = -(*info);
  775. xerbla_("ZGELST ", &i__1, 6);
  776. return;
  777. } else if (lquery) {
  778. return;
  779. }
  780. /* Quick return if possible */
  781. /* Computing MIN */
  782. i__1 = f2cmin(*m,*n);
  783. if (f2cmin(i__1,*nrhs) == 0) {
  784. i__1 = f2cmax(*m,*n);
  785. zlaset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  786. d__1 = (doublereal) lwopt;
  787. work[1].r = d__1, work[1].i = 0.;
  788. return;
  789. }
  790. /* *GEQRT and *GELQT routines cannot accept NB larger than f2cmin(M,N) */
  791. if (nb > mn) {
  792. nb = mn;
  793. }
  794. /* Determine the block size from the supplied LWORK */
  795. /* ( at this stage we know that LWORK >= (minimum required workspace, */
  796. /* but it may be less than optimal) */
  797. /* Computing MIN */
  798. i__1 = nb, i__2 = *lwork / (mn + mnnrhs);
  799. nb = f2cmin(i__1,i__2);
  800. /* The minimum value of NB, when blocked code is used */
  801. /* Computing MAX */
  802. i__1 = 2, i__2 = ilaenv_(&c__2, "ZGELST", " ", m, n, &c_n1, &c_n1, (
  803. ftnlen)6, (ftnlen)1);
  804. nbmin = f2cmax(i__1,i__2);
  805. if (nb < nbmin) {
  806. nb = 1;
  807. }
  808. /* Get machine parameters */
  809. smlnum = dlamch_("S") / dlamch_("P");
  810. bignum = 1. / smlnum;
  811. dlabad_(&smlnum, &bignum);
  812. /* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
  813. anrm = zlange_("M", m, n, &a[a_offset], lda, rwork);
  814. iascl = 0;
  815. if (anrm > 0. && anrm < smlnum) {
  816. /* Scale matrix norm up to SMLNUM */
  817. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  818. info);
  819. iascl = 1;
  820. } else if (anrm > bignum) {
  821. /* Scale matrix norm down to BIGNUM */
  822. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  823. info);
  824. iascl = 2;
  825. } else if (anrm == 0.) {
  826. /* Matrix all zero. Return zero solution. */
  827. i__1 = f2cmax(*m,*n);
  828. zlaset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  829. d__1 = (doublereal) lwopt;
  830. work[1].r = d__1, work[1].i = 0.;
  831. return;
  832. }
  833. brow = *m;
  834. if (tpsd) {
  835. brow = *n;
  836. }
  837. bnrm = zlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
  838. ibscl = 0;
  839. if (bnrm > 0. && bnrm < smlnum) {
  840. /* Scale matrix norm up to SMLNUM */
  841. zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
  842. ldb, info);
  843. ibscl = 1;
  844. } else if (bnrm > bignum) {
  845. /* Scale matrix norm down to BIGNUM */
  846. zlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
  847. ldb, info);
  848. ibscl = 2;
  849. }
  850. if (*m >= *n) {
  851. /* M > N: */
  852. /* Compute the blocked QR factorization of A, */
  853. /* using the compact WY representation of Q, */
  854. /* workspace at least N, optimally N*NB. */
  855. zgeqrt_(m, n, &nb, &a[a_offset], lda, &work[1], &nb, &work[mn * nb +
  856. 1], info);
  857. if (! tpsd) {
  858. /* M > N, A is not transposed: */
  859. /* Overdetermined system of equations, */
  860. /* least-squares problem, f2cmin || A * X - B ||. */
  861. /* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), */
  862. /* using the compact WY representation of Q, */
  863. /* workspace at least NRHS, optimally NRHS*NB. */
  864. zgemqrt_("Left", "Conjugate transpose", m, nrhs, n, &nb, &a[
  865. a_offset], lda, &work[1], &nb, &b[b_offset], ldb, &work[
  866. mn * nb + 1], info);
  867. /* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
  868. ztrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
  869. , lda, &b[b_offset], ldb, info);
  870. if (*info > 0) {
  871. return;
  872. }
  873. scllen = *n;
  874. } else {
  875. /* M > N, A is transposed: */
  876. /* Underdetermined system of equations, */
  877. /* minimum norm solution of A**T * X = B. */
  878. /* Compute B := inv(R**T) * B in two row blocks of B. */
  879. /* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
  880. ztrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[
  881. a_offset], lda, &b[b_offset], ldb, info);
  882. if (*info > 0) {
  883. return;
  884. }
  885. /* Block 2: Zero out all rows below the N-th row in B: */
  886. /* B(N+1:M,1:NRHS) = ZERO */
  887. i__1 = *nrhs;
  888. for (j = 1; j <= i__1; ++j) {
  889. i__2 = *m;
  890. for (i__ = *n + 1; i__ <= i__2; ++i__) {
  891. i__3 = i__ + j * b_dim1;
  892. b[i__3].r = 0., b[i__3].i = 0.;
  893. }
  894. }
  895. /* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), */
  896. /* using the compact WY representation of Q, */
  897. /* workspace at least NRHS, optimally NRHS*NB. */
  898. zgemqrt_("Left", "No transpose", m, nrhs, n, &nb, &a[a_offset],
  899. lda, &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
  900. info);
  901. scllen = *m;
  902. }
  903. } else {
  904. /* M < N: */
  905. /* Compute the blocked LQ factorization of A, */
  906. /* using the compact WY representation of Q, */
  907. /* workspace at least M, optimally M*NB. */
  908. zgelqt_(m, n, &nb, &a[a_offset], lda, &work[1], &nb, &work[mn * nb +
  909. 1], info);
  910. if (! tpsd) {
  911. /* M < N, A is not transposed: */
  912. /* Underdetermined system of equations, */
  913. /* minimum norm solution of A * X = B. */
  914. /* Compute B := inv(L) * B in two row blocks of B. */
  915. /* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
  916. ztrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
  917. , lda, &b[b_offset], ldb, info);
  918. if (*info > 0) {
  919. return;
  920. }
  921. /* Block 2: Zero out all rows below the M-th row in B: */
  922. /* B(M+1:N,1:NRHS) = ZERO */
  923. i__1 = *nrhs;
  924. for (j = 1; j <= i__1; ++j) {
  925. i__2 = *n;
  926. for (i__ = *m + 1; i__ <= i__2; ++i__) {
  927. i__3 = i__ + j * b_dim1;
  928. b[i__3].r = 0., b[i__3].i = 0.;
  929. }
  930. }
  931. /* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), */
  932. /* using the compact WY representation of Q, */
  933. /* workspace at least NRHS, optimally NRHS*NB. */
  934. zgemlqt_("Left", "Conjugate transpose", n, nrhs, m, &nb, &a[
  935. a_offset], lda, &work[1], &nb, &b[b_offset], ldb, &work[
  936. mn * nb + 1], info);
  937. scllen = *n;
  938. } else {
  939. /* M < N, A is transposed: */
  940. /* Overdetermined system of equations, */
  941. /* least-squares problem, f2cmin || A**T * X - B ||. */
  942. /* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), */
  943. /* using the compact WY representation of Q, */
  944. /* workspace at least NRHS, optimally NRHS*NB. */
  945. zgemlqt_("Left", "No transpose", n, nrhs, m, &nb, &a[a_offset],
  946. lda, &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
  947. info);
  948. /* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
  949. ztrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[
  950. a_offset], lda, &b[b_offset], ldb, info);
  951. if (*info > 0) {
  952. return;
  953. }
  954. scllen = *m;
  955. }
  956. }
  957. /* Undo scaling */
  958. if (iascl == 1) {
  959. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
  960. , ldb, info);
  961. } else if (iascl == 2) {
  962. zlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
  963. , ldb, info);
  964. }
  965. if (ibscl == 1) {
  966. zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
  967. , ldb, info);
  968. } else if (ibscl == 2) {
  969. zlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
  970. , ldb, info);
  971. }
  972. d__1 = (doublereal) lwopt;
  973. work[1].r = d__1, work[1].i = 0.;
  974. return;
  975. /* End of ZGELST */
  976. } /* zgelst_ */