You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clange.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLANGE + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clange.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clange.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clange.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLANGE( NORM, M, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER LDA, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL WORK( * )
  29. * COMPLEX A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CLANGE returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return CLANGE
  44. *> \verbatim
  45. *>
  46. *> CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in CLANGE as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] M
  71. *> \verbatim
  72. *> M is INTEGER
  73. *> The number of rows of the matrix A. M >= 0. When M = 0,
  74. *> CLANGE is set to zero.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The number of columns of the matrix A. N >= 0. When N = 0,
  81. *> CLANGE is set to zero.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] A
  85. *> \verbatim
  86. *> A is COMPLEX array, dimension (LDA,N)
  87. *> The m by n matrix A.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(M,1).
  94. *> \endverbatim
  95. *>
  96. *> \param[out] WORK
  97. *> \verbatim
  98. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  99. *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  100. *> referenced.
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \date December 2016
  112. *
  113. *> \ingroup complexGEauxiliary
  114. *
  115. * =====================================================================
  116. REAL FUNCTION CLANGE( NORM, M, N, A, LDA, WORK )
  117. *
  118. * -- LAPACK auxiliary routine (version 3.7.0) --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. * December 2016
  122. *
  123. IMPLICIT NONE
  124. * .. Scalar Arguments ..
  125. CHARACTER NORM
  126. INTEGER LDA, M, N
  127. * ..
  128. * .. Array Arguments ..
  129. REAL WORK( * )
  130. COMPLEX A( LDA, * )
  131. * ..
  132. *
  133. * =====================================================================
  134. *
  135. * .. Parameters ..
  136. REAL ONE, ZERO
  137. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  138. * ..
  139. * .. Local Scalars ..
  140. INTEGER I, J
  141. REAL SUM, VALUE, TEMP
  142. * ..
  143. * .. Local Arrays ..
  144. REAL SSQ( 2 ), COLSSQ( 2 )
  145. * ..
  146. * .. External Functions ..
  147. LOGICAL LSAME, SISNAN
  148. EXTERNAL LSAME, SISNAN
  149. * ..
  150. * .. External Subroutines ..
  151. EXTERNAL CLASSQ, SCOMBSSQ
  152. * ..
  153. * .. Intrinsic Functions ..
  154. INTRINSIC ABS, MIN, SQRT
  155. * ..
  156. * .. Executable Statements ..
  157. *
  158. IF( MIN( M, N ).EQ.0 ) THEN
  159. VALUE = ZERO
  160. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  161. *
  162. * Find max(abs(A(i,j))).
  163. *
  164. VALUE = ZERO
  165. DO 20 J = 1, N
  166. DO 10 I = 1, M
  167. TEMP = ABS( A( I, J ) )
  168. IF( VALUE.LT.TEMP .OR. SISNAN( TEMP ) ) VALUE = TEMP
  169. 10 CONTINUE
  170. 20 CONTINUE
  171. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  172. *
  173. * Find norm1(A).
  174. *
  175. VALUE = ZERO
  176. DO 40 J = 1, N
  177. SUM = ZERO
  178. DO 30 I = 1, M
  179. SUM = SUM + ABS( A( I, J ) )
  180. 30 CONTINUE
  181. IF( VALUE.LT.SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  182. 40 CONTINUE
  183. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  184. *
  185. * Find normI(A).
  186. *
  187. DO 50 I = 1, M
  188. WORK( I ) = ZERO
  189. 50 CONTINUE
  190. DO 70 J = 1, N
  191. DO 60 I = 1, M
  192. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  193. 60 CONTINUE
  194. 70 CONTINUE
  195. VALUE = ZERO
  196. DO 80 I = 1, M
  197. TEMP = WORK( I )
  198. IF( VALUE.LT.TEMP .OR. SISNAN( TEMP ) ) VALUE = TEMP
  199. 80 CONTINUE
  200. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  201. *
  202. * Find normF(A).
  203. * SSQ(1) is scale
  204. * SSQ(2) is sum-of-squares
  205. * For better accuracy, sum each column separately.
  206. *
  207. SSQ( 1 ) = ZERO
  208. SSQ( 2 ) = ONE
  209. DO 90 J = 1, N
  210. COLSSQ( 1 ) = ZERO
  211. COLSSQ( 2 ) = ONE
  212. CALL CLASSQ( M, A( 1, J ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  213. CALL SCOMBSSQ( SSQ, COLSSQ )
  214. 90 CONTINUE
  215. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  216. END IF
  217. *
  218. CLANGE = VALUE
  219. RETURN
  220. *
  221. * End of CLANGE
  222. *
  223. END