You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clangb.f 6.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. *> \brief \b CLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLANGB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM
  26. * INTEGER KL, KU, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL WORK( * )
  30. * COMPLEX AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLANGB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return CLANGB
  45. *> \verbatim
  46. *>
  47. *> CLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in CLANGB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrix A. N >= 0. When N = 0, CLANGB is
  75. *> set to zero.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] KL
  79. *> \verbatim
  80. *> KL is INTEGER
  81. *> The number of sub-diagonals of the matrix A. KL >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] KU
  85. *> \verbatim
  86. *> KU is INTEGER
  87. *> The number of super-diagonals of the matrix A. KU >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] AB
  91. *> \verbatim
  92. *> AB is COMPLEX array, dimension (LDAB,N)
  93. *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
  94. *> column of A is stored in the j-th column of the array AB as
  95. *> follows:
  96. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDAB
  100. *> \verbatim
  101. *> LDAB is INTEGER
  102. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  109. *> referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date December 2016
  121. *
  122. *> \ingroup complexGBauxiliary
  123. *
  124. * =====================================================================
  125. REAL FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
  126. $ WORK )
  127. *
  128. * -- LAPACK auxiliary routine (version 3.7.0) --
  129. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  130. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131. * December 2016
  132. *
  133. IMPLICIT NONE
  134. * .. Scalar Arguments ..
  135. CHARACTER NORM
  136. INTEGER KL, KU, LDAB, N
  137. * ..
  138. * .. Array Arguments ..
  139. REAL WORK( * )
  140. COMPLEX AB( LDAB, * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. REAL ONE, ZERO
  147. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  148. * ..
  149. * .. Local Scalars ..
  150. INTEGER I, J, K, L
  151. REAL SUM, VALUE, TEMP
  152. * ..
  153. * .. Local Arrays ..
  154. REAL SSQ( 2 ), COLSSQ( 2 )
  155. * ..
  156. * .. External Functions ..
  157. LOGICAL LSAME, SISNAN
  158. EXTERNAL LSAME, SISNAN
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL CLASSQ, SCOMBSSQ
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC ABS, MAX, MIN, SQRT
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. IF( N.EQ.0 ) THEN
  169. VALUE = ZERO
  170. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  171. *
  172. * Find max(abs(A(i,j))).
  173. *
  174. VALUE = ZERO
  175. DO 20 J = 1, N
  176. DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  177. TEMP = ABS( AB( I, J ) )
  178. IF( VALUE.LT.TEMP .OR. SISNAN( TEMP ) ) VALUE = TEMP
  179. 10 CONTINUE
  180. 20 CONTINUE
  181. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  182. *
  183. * Find norm1(A).
  184. *
  185. VALUE = ZERO
  186. DO 40 J = 1, N
  187. SUM = ZERO
  188. DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  189. SUM = SUM + ABS( AB( I, J ) )
  190. 30 CONTINUE
  191. IF( VALUE.LT.SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  192. 40 CONTINUE
  193. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  194. *
  195. * Find normI(A).
  196. *
  197. DO 50 I = 1, N
  198. WORK( I ) = ZERO
  199. 50 CONTINUE
  200. DO 70 J = 1, N
  201. K = KU + 1 - J
  202. DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
  203. WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
  204. 60 CONTINUE
  205. 70 CONTINUE
  206. VALUE = ZERO
  207. DO 80 I = 1, N
  208. TEMP = WORK( I )
  209. IF( VALUE.LT.TEMP .OR. SISNAN( TEMP ) ) VALUE = TEMP
  210. 80 CONTINUE
  211. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  212. *
  213. * Find normF(A).
  214. * SSQ(1) is scale
  215. * SSQ(2) is sum-of-squares
  216. * For better accuracy, sum each column separately.
  217. *
  218. SSQ( 1 ) = ZERO
  219. SSQ( 2 ) = ONE
  220. DO 90 J = 1, N
  221. L = MAX( 1, J-KU )
  222. K = KU + 1 - J + L
  223. COLSSQ( 1 ) = ZERO
  224. COLSSQ( 2 ) = ONE
  225. CALL CLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1,
  226. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  227. CALL SCOMBSSQ( SSQ, COLSSQ )
  228. 90 CONTINUE
  229. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  230. END IF
  231. *
  232. CLANGB = VALUE
  233. RETURN
  234. *
  235. * End of CLANGB
  236. *
  237. END