You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dptcon.f 5.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. *> \brief \b DPTCON
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPTCON + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptcon.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptcon.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptcon.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * DOUBLE PRECISION ANORM, RCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION D( * ), E( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DPTCON computes the reciprocal of the condition number (in the
  38. *> 1-norm) of a real symmetric positive definite tridiagonal matrix
  39. *> using the factorization A = L*D*L**T or A = U**T*D*U computed by
  40. *> DPTTRF.
  41. *>
  42. *> Norm(inv(A)) is computed by a direct method, and the reciprocal of
  43. *> the condition number is computed as
  44. *> RCOND = 1 / (ANORM * norm(inv(A))).
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The order of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] D
  57. *> \verbatim
  58. *> D is DOUBLE PRECISION array, dimension (N)
  59. *> The n diagonal elements of the diagonal matrix D from the
  60. *> factorization of A, as computed by DPTTRF.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] E
  64. *> \verbatim
  65. *> E is DOUBLE PRECISION array, dimension (N-1)
  66. *> The (n-1) off-diagonal elements of the unit bidiagonal factor
  67. *> U or L from the factorization of A, as computed by DPTTRF.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] ANORM
  71. *> \verbatim
  72. *> ANORM is DOUBLE PRECISION
  73. *> The 1-norm of the original matrix A.
  74. *> \endverbatim
  75. *>
  76. *> \param[out] RCOND
  77. *> \verbatim
  78. *> RCOND is DOUBLE PRECISION
  79. *> The reciprocal of the condition number of the matrix A,
  80. *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
  81. *> 1-norm of inv(A) computed in this routine.
  82. *> \endverbatim
  83. *>
  84. *> \param[out] WORK
  85. *> \verbatim
  86. *> WORK is DOUBLE PRECISION array, dimension (N)
  87. *> \endverbatim
  88. *>
  89. *> \param[out] INFO
  90. *> \verbatim
  91. *> INFO is INTEGER
  92. *> = 0: successful exit
  93. *> < 0: if INFO = -i, the i-th argument had an illegal value
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup doublePTcomputational
  107. *
  108. *> \par Further Details:
  109. * =====================
  110. *>
  111. *> \verbatim
  112. *>
  113. *> The method used is described in Nicholas J. Higham, "Efficient
  114. *> Algorithms for Computing the Condition Number of a Tridiagonal
  115. *> Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
  116. *> \endverbatim
  117. *>
  118. * =====================================================================
  119. SUBROUTINE DPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
  120. *
  121. * -- LAPACK computational routine (version 3.7.0) --
  122. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  123. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  124. * December 2016
  125. *
  126. * .. Scalar Arguments ..
  127. INTEGER INFO, N
  128. DOUBLE PRECISION ANORM, RCOND
  129. * ..
  130. * .. Array Arguments ..
  131. DOUBLE PRECISION D( * ), E( * ), WORK( * )
  132. * ..
  133. *
  134. * =====================================================================
  135. *
  136. * .. Parameters ..
  137. DOUBLE PRECISION ONE, ZERO
  138. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  139. * ..
  140. * .. Local Scalars ..
  141. INTEGER I, IX
  142. DOUBLE PRECISION AINVNM
  143. * ..
  144. * .. External Functions ..
  145. INTEGER IDAMAX
  146. EXTERNAL IDAMAX
  147. * ..
  148. * .. External Subroutines ..
  149. EXTERNAL XERBLA
  150. * ..
  151. * .. Intrinsic Functions ..
  152. INTRINSIC ABS
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. * Test the input arguments.
  157. *
  158. INFO = 0
  159. IF( N.LT.0 ) THEN
  160. INFO = -1
  161. ELSE IF( ANORM.LT.ZERO ) THEN
  162. INFO = -4
  163. END IF
  164. IF( INFO.NE.0 ) THEN
  165. CALL XERBLA( 'DPTCON', -INFO )
  166. RETURN
  167. END IF
  168. *
  169. * Quick return if possible
  170. *
  171. RCOND = ZERO
  172. IF( N.EQ.0 ) THEN
  173. RCOND = ONE
  174. RETURN
  175. ELSE IF( ANORM.EQ.ZERO ) THEN
  176. RETURN
  177. END IF
  178. *
  179. * Check that D(1:N) is positive.
  180. *
  181. DO 10 I = 1, N
  182. IF( D( I ).LE.ZERO )
  183. $ RETURN
  184. 10 CONTINUE
  185. *
  186. * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
  187. *
  188. * m(i,j) = abs(A(i,j)), i = j,
  189. * m(i,j) = -abs(A(i,j)), i .ne. j,
  190. *
  191. * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T.
  192. *
  193. * Solve M(L) * x = e.
  194. *
  195. WORK( 1 ) = ONE
  196. DO 20 I = 2, N
  197. WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
  198. 20 CONTINUE
  199. *
  200. * Solve D * M(L)**T * x = b.
  201. *
  202. WORK( N ) = WORK( N ) / D( N )
  203. DO 30 I = N - 1, 1, -1
  204. WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
  205. 30 CONTINUE
  206. *
  207. * Compute AINVNM = max(x(i)), 1<=i<=n.
  208. *
  209. IX = IDAMAX( N, WORK, 1 )
  210. AINVNM = ABS( WORK( IX ) )
  211. *
  212. * Compute the reciprocal condition number.
  213. *
  214. IF( AINVNM.NE.ZERO )
  215. $ RCOND = ( ONE / AINVNM ) / ANORM
  216. *
  217. RETURN
  218. *
  219. * End of DPTCON
  220. *
  221. END