You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sqrt03.f 7.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. *> \brief \b SQRT03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER K, LDA, LWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
  19. * $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  20. * $ WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
  30. *>
  31. *> SQRT03 compares the results of a call to SORMQR with the results of
  32. *> forming Q explicitly by a call to SORGQR and then performing matrix
  33. *> multiplication by a call to SGEMM.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The order of the orthogonal matrix Q. M >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of rows or columns of the matrix C; C is m-by-n if
  49. *> Q is applied from the left, or n-by-m if Q is applied from
  50. *> the right. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] K
  54. *> \verbatim
  55. *> K is INTEGER
  56. *> The number of elementary reflectors whose product defines the
  57. *> orthogonal matrix Q. M >= K >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] AF
  61. *> \verbatim
  62. *> AF is REAL array, dimension (LDA,N)
  63. *> Details of the QR factorization of an m-by-n matrix, as
  64. *> returned by SGEQRF. See SGEQRF for further details.
  65. *> \endverbatim
  66. *>
  67. *> \param[out] C
  68. *> \verbatim
  69. *> C is REAL array, dimension (LDA,N)
  70. *> \endverbatim
  71. *>
  72. *> \param[out] CC
  73. *> \verbatim
  74. *> CC is REAL array, dimension (LDA,N)
  75. *> \endverbatim
  76. *>
  77. *> \param[out] Q
  78. *> \verbatim
  79. *> Q is REAL array, dimension (LDA,M)
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the arrays AF, C, CC, and Q.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] TAU
  89. *> \verbatim
  90. *> TAU is REAL array, dimension (min(M,N))
  91. *> The scalar factors of the elementary reflectors corresponding
  92. *> to the QR factorization in AF.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is REAL array, dimension (LWORK)
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LWORK
  101. *> \verbatim
  102. *> LWORK is INTEGER
  103. *> The length of WORK. LWORK must be at least M, and should be
  104. *> M*NB, where NB is the blocksize for this environment.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] RWORK
  108. *> \verbatim
  109. *> RWORK is REAL array, dimension (M)
  110. *> \endverbatim
  111. *>
  112. *> \param[out] RESULT
  113. *> \verbatim
  114. *> RESULT is REAL array, dimension (4)
  115. *> The test ratios compare two techniques for multiplying a
  116. *> random matrix C by an m-by-m orthogonal matrix Q.
  117. *> RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS )
  118. *> RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS )
  119. *> RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
  120. *> RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
  121. *> \endverbatim
  122. *
  123. * Authors:
  124. * ========
  125. *
  126. *> \author Univ. of Tennessee
  127. *> \author Univ. of California Berkeley
  128. *> \author Univ. of Colorado Denver
  129. *> \author NAG Ltd.
  130. *
  131. *> \date December 2016
  132. *
  133. *> \ingroup single_lin
  134. *
  135. * =====================================================================
  136. SUBROUTINE SQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
  137. $ RWORK, RESULT )
  138. *
  139. * -- LAPACK test routine (version 3.7.0) --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. * December 2016
  143. *
  144. * .. Scalar Arguments ..
  145. INTEGER K, LDA, LWORK, M, N
  146. * ..
  147. * .. Array Arguments ..
  148. REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
  149. $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  150. $ WORK( LWORK )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. REAL ONE
  157. PARAMETER ( ONE = 1.0E0 )
  158. REAL ROGUE
  159. PARAMETER ( ROGUE = -1.0E+10 )
  160. * ..
  161. * .. Local Scalars ..
  162. CHARACTER SIDE, TRANS
  163. INTEGER INFO, ISIDE, ITRANS, J, MC, NC
  164. REAL CNORM, EPS, RESID
  165. * ..
  166. * .. External Functions ..
  167. LOGICAL LSAME
  168. REAL SLAMCH, SLANGE
  169. EXTERNAL LSAME, SLAMCH, SLANGE
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL SGEMM, SLACPY, SLARNV, SLASET, SORGQR, SORMQR
  173. * ..
  174. * .. Local Arrays ..
  175. INTEGER ISEED( 4 )
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC MAX, REAL
  179. * ..
  180. * .. Scalars in Common ..
  181. CHARACTER*32 SRNAMT
  182. * ..
  183. * .. Common blocks ..
  184. COMMON / SRNAMC / SRNAMT
  185. * ..
  186. * .. Data statements ..
  187. DATA ISEED / 1988, 1989, 1990, 1991 /
  188. * ..
  189. * .. Executable Statements ..
  190. *
  191. EPS = SLAMCH( 'Epsilon' )
  192. *
  193. * Copy the first k columns of the factorization to the array Q
  194. *
  195. CALL SLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
  196. CALL SLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
  197. *
  198. * Generate the m-by-m matrix Q
  199. *
  200. SRNAMT = 'SORGQR'
  201. CALL SORGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO )
  202. *
  203. DO 30 ISIDE = 1, 2
  204. IF( ISIDE.EQ.1 ) THEN
  205. SIDE = 'L'
  206. MC = M
  207. NC = N
  208. ELSE
  209. SIDE = 'R'
  210. MC = N
  211. NC = M
  212. END IF
  213. *
  214. * Generate MC by NC matrix C
  215. *
  216. DO 10 J = 1, NC
  217. CALL SLARNV( 2, ISEED, MC, C( 1, J ) )
  218. 10 CONTINUE
  219. CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK )
  220. IF( CNORM.EQ.0.0 )
  221. $ CNORM = ONE
  222. *
  223. DO 20 ITRANS = 1, 2
  224. IF( ITRANS.EQ.1 ) THEN
  225. TRANS = 'N'
  226. ELSE
  227. TRANS = 'T'
  228. END IF
  229. *
  230. * Copy C
  231. *
  232. CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
  233. *
  234. * Apply Q or Q' to C
  235. *
  236. SRNAMT = 'SORMQR'
  237. CALL SORMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
  238. $ WORK, LWORK, INFO )
  239. *
  240. * Form explicit product and subtract
  241. *
  242. IF( LSAME( SIDE, 'L' ) ) THEN
  243. CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
  244. $ LDA, C, LDA, ONE, CC, LDA )
  245. ELSE
  246. CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
  247. $ LDA, Q, LDA, ONE, CC, LDA )
  248. END IF
  249. *
  250. * Compute error in the difference
  251. *
  252. RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK )
  253. RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
  254. $ ( REAL( MAX( 1, M ) )*CNORM*EPS )
  255. *
  256. 20 CONTINUE
  257. 30 CONTINUE
  258. *
  259. RETURN
  260. *
  261. * End of SQRT03
  262. *
  263. END