You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claghe.f 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. *> \brief \b CLAGHE
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INFO, K, LDA, N
  15. * ..
  16. * .. Array Arguments ..
  17. * INTEGER ISEED( 4 )
  18. * REAL D( * )
  19. * COMPLEX A( LDA, * ), WORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CLAGHE generates a complex hermitian matrix A, by pre- and post-
  29. *> multiplying a real diagonal matrix D with a random unitary matrix:
  30. *> A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
  31. *> unitary transformations.
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] N
  38. *> \verbatim
  39. *> N is INTEGER
  40. *> The order of the matrix A. N >= 0.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] K
  44. *> \verbatim
  45. *> K is INTEGER
  46. *> The number of nonzero subdiagonals within the band of A.
  47. *> 0 <= K <= N-1.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] D
  51. *> \verbatim
  52. *> D is REAL array, dimension (N)
  53. *> The diagonal elements of the diagonal matrix D.
  54. *> \endverbatim
  55. *>
  56. *> \param[out] A
  57. *> \verbatim
  58. *> A is COMPLEX array, dimension (LDA,N)
  59. *> The generated n by n hermitian matrix A (the full matrix is
  60. *> stored).
  61. *> \endverbatim
  62. *>
  63. *> \param[in] LDA
  64. *> \verbatim
  65. *> LDA is INTEGER
  66. *> The leading dimension of the array A. LDA >= N.
  67. *> \endverbatim
  68. *>
  69. *> \param[in,out] ISEED
  70. *> \verbatim
  71. *> ISEED is INTEGER array, dimension (4)
  72. *> On entry, the seed of the random number generator; the array
  73. *> elements must be between 0 and 4095, and ISEED(4) must be
  74. *> odd.
  75. *> On exit, the seed is updated.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] WORK
  79. *> \verbatim
  80. *> WORK is COMPLEX array, dimension (2*N)
  81. *> \endverbatim
  82. *>
  83. *> \param[out] INFO
  84. *> \verbatim
  85. *> INFO is INTEGER
  86. *> = 0: successful exit
  87. *> < 0: if INFO = -i, the i-th argument had an illegal value
  88. *> \endverbatim
  89. *
  90. * Authors:
  91. * ========
  92. *
  93. *> \author Univ. of Tennessee
  94. *> \author Univ. of California Berkeley
  95. *> \author Univ. of Colorado Denver
  96. *> \author NAG Ltd.
  97. *
  98. *> \ingroup complex_matgen
  99. *
  100. * =====================================================================
  101. SUBROUTINE CLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
  102. *
  103. * -- LAPACK auxiliary routine --
  104. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  105. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  106. *
  107. * .. Scalar Arguments ..
  108. INTEGER INFO, K, LDA, N
  109. * ..
  110. * .. Array Arguments ..
  111. INTEGER ISEED( 4 )
  112. REAL D( * )
  113. COMPLEX A( LDA, * ), WORK( * )
  114. * ..
  115. *
  116. * =====================================================================
  117. *
  118. * .. Parameters ..
  119. COMPLEX ZERO, ONE, HALF
  120. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
  121. $ ONE = ( 1.0E+0, 0.0E+0 ),
  122. $ HALF = ( 0.5E+0, 0.0E+0 ) )
  123. * ..
  124. * .. Local Scalars ..
  125. INTEGER I, J
  126. REAL WN
  127. COMPLEX ALPHA, TAU, WA, WB
  128. * ..
  129. * .. External Subroutines ..
  130. EXTERNAL CAXPY, CGEMV, CGERC, CHEMV, CHER2, CLARNV,
  131. $ CSCAL, XERBLA
  132. * ..
  133. * .. External Functions ..
  134. REAL SCNRM2
  135. COMPLEX CDOTC
  136. EXTERNAL SCNRM2, CDOTC
  137. * ..
  138. * .. Intrinsic Functions ..
  139. INTRINSIC ABS, CONJG, MAX, REAL
  140. * ..
  141. * .. Executable Statements ..
  142. *
  143. * Test the input arguments
  144. *
  145. INFO = 0
  146. IF( N.LT.0 ) THEN
  147. INFO = -1
  148. ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
  149. INFO = -2
  150. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  151. INFO = -5
  152. END IF
  153. IF( INFO.LT.0 ) THEN
  154. CALL XERBLA( 'CLAGHE', -INFO )
  155. RETURN
  156. END IF
  157. *
  158. * initialize lower triangle of A to diagonal matrix
  159. *
  160. DO 20 J = 1, N
  161. DO 10 I = J + 1, N
  162. A( I, J ) = ZERO
  163. 10 CONTINUE
  164. 20 CONTINUE
  165. DO 30 I = 1, N
  166. A( I, I ) = D( I )
  167. 30 CONTINUE
  168. *
  169. * Generate lower triangle of hermitian matrix
  170. *
  171. DO 40 I = N - 1, 1, -1
  172. *
  173. * generate random reflection
  174. *
  175. CALL CLARNV( 3, ISEED, N-I+1, WORK )
  176. WN = SCNRM2( N-I+1, WORK, 1 )
  177. WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
  178. IF( WN.EQ.ZERO ) THEN
  179. TAU = ZERO
  180. ELSE
  181. WB = WORK( 1 ) + WA
  182. CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
  183. WORK( 1 ) = ONE
  184. TAU = REAL( WB / WA )
  185. END IF
  186. *
  187. * apply random reflection to A(i:n,i:n) from the left
  188. * and the right
  189. *
  190. * compute y := tau * A * u
  191. *
  192. CALL CHEMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
  193. $ WORK( N+1 ), 1 )
  194. *
  195. * compute v := y - 1/2 * tau * ( y, u ) * u
  196. *
  197. ALPHA = -HALF*TAU*CDOTC( N-I+1, WORK( N+1 ), 1, WORK, 1 )
  198. CALL CAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
  199. *
  200. * apply the transformation as a rank-2 update to A(i:n,i:n)
  201. *
  202. CALL CHER2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
  203. $ A( I, I ), LDA )
  204. 40 CONTINUE
  205. *
  206. * Reduce number of subdiagonals to K
  207. *
  208. DO 60 I = 1, N - 1 - K
  209. *
  210. * generate reflection to annihilate A(k+i+1:n,i)
  211. *
  212. WN = SCNRM2( N-K-I+1, A( K+I, I ), 1 )
  213. WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
  214. IF( WN.EQ.ZERO ) THEN
  215. TAU = ZERO
  216. ELSE
  217. WB = A( K+I, I ) + WA
  218. CALL CSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
  219. A( K+I, I ) = ONE
  220. TAU = REAL( WB / WA )
  221. END IF
  222. *
  223. * apply reflection to A(k+i:n,i+1:k+i-1) from the left
  224. *
  225. CALL CGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
  226. $ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
  227. CALL CGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
  228. $ A( K+I, I+1 ), LDA )
  229. *
  230. * apply reflection to A(k+i:n,k+i:n) from the left and the right
  231. *
  232. * compute y := tau * A * u
  233. *
  234. CALL CHEMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
  235. $ A( K+I, I ), 1, ZERO, WORK, 1 )
  236. *
  237. * compute v := y - 1/2 * tau * ( y, u ) * u
  238. *
  239. ALPHA = -HALF*TAU*CDOTC( N-K-I+1, WORK, 1, A( K+I, I ), 1 )
  240. CALL CAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
  241. *
  242. * apply hermitian rank-2 update to A(k+i:n,k+i:n)
  243. *
  244. CALL CHER2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
  245. $ A( K+I, K+I ), LDA )
  246. *
  247. A( K+I, I ) = -WA
  248. DO 50 J = K + I + 1, N
  249. A( J, I ) = ZERO
  250. 50 CONTINUE
  251. 60 CONTINUE
  252. *
  253. * Store full hermitian matrix
  254. *
  255. DO 80 J = 1, N
  256. DO 70 I = J + 1, N
  257. A( J, I ) = CONJG( A( I, J ) )
  258. 70 CONTINUE
  259. 80 CONTINUE
  260. RETURN
  261. *
  262. * End of CLAGHE
  263. *
  264. END