You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrsyl3.f 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142
  1. *> \brief \b ZTRSYL3
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. *
  7. *> \par Purpose
  8. * =============
  9. *>
  10. *> \verbatim
  11. *>
  12. *> ZTRSYL3 solves the complex Sylvester matrix equation:
  13. *>
  14. *> op(A)*X + X*op(B) = scale*C or
  15. *> op(A)*X - X*op(B) = scale*C,
  16. *>
  17. *> where op(A) = A or A**H, and A and B are both upper triangular. A is
  18. *> M-by-M and B is N-by-N; the right hand side C and the solution X are
  19. *> M-by-N; and scale is an output scale factor, set <= 1 to avoid
  20. *> overflow in X.
  21. *>
  22. *> This is the block version of the algorithm.
  23. *> \endverbatim
  24. *
  25. * Arguments
  26. * =========
  27. *
  28. *> \param[in] TRANA
  29. *> \verbatim
  30. *> TRANA is CHARACTER*1
  31. *> Specifies the option op(A):
  32. *> = 'N': op(A) = A (No transpose)
  33. *> = 'C': op(A) = A**H (Conjugate transpose)
  34. *> \endverbatim
  35. *>
  36. *> \param[in] TRANB
  37. *> \verbatim
  38. *> TRANB is CHARACTER*1
  39. *> Specifies the option op(B):
  40. *> = 'N': op(B) = B (No transpose)
  41. *> = 'C': op(B) = B**H (Conjugate transpose)
  42. *> \endverbatim
  43. *>
  44. *> \param[in] ISGN
  45. *> \verbatim
  46. *> ISGN is INTEGER
  47. *> Specifies the sign in the equation:
  48. *> = +1: solve op(A)*X + X*op(B) = scale*C
  49. *> = -1: solve op(A)*X - X*op(B) = scale*C
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The order of the matrix A, and the number of rows in the
  56. *> matrices X and C. M >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the matrix B, and the number of columns in the
  63. *> matrices X and C. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] A
  67. *> \verbatim
  68. *> A is COMPLEX*16 array, dimension (LDA,M)
  69. *> The upper triangular matrix A.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDA
  73. *> \verbatim
  74. *> LDA is INTEGER
  75. *> The leading dimension of the array A. LDA >= max(1,M).
  76. *> \endverbatim
  77. *>
  78. *> \param[in] B
  79. *> \verbatim
  80. *> B is COMPLEX*16 array, dimension (LDB,N)
  81. *> The upper triangular matrix B.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDB
  85. *> \verbatim
  86. *> LDB is INTEGER
  87. *> The leading dimension of the array B. LDB >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] C
  91. *> \verbatim
  92. *> C is COMPLEX*16 array, dimension (LDC,N)
  93. *> On entry, the M-by-N right hand side matrix C.
  94. *> On exit, C is overwritten by the solution matrix X.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDC
  98. *> \verbatim
  99. *> LDC is INTEGER
  100. *> The leading dimension of the array C. LDC >= max(1,M)
  101. *> \endverbatim
  102. *>
  103. *> \param[out] SCALE
  104. *> \verbatim
  105. *> SCALE is DOUBLE PRECISION
  106. *> The scale factor, scale, set <= 1 to avoid overflow in X.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] SWORK
  110. *> \verbatim
  111. *> SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS),
  112. *> MAX(1,COLS)).
  113. *> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS
  114. *> and SWORK(2) returns the optimal COLS.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDSWORK
  118. *> \verbatim
  119. *> LDSWORK is INTEGER
  120. *> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1)
  121. *> and NB is the optimal block size.
  122. *>
  123. *> If LDSWORK = -1, then a workspace query is assumed; the routine
  124. *> only calculates the optimal dimensions of the SWORK matrix,
  125. *> returns these values as the first and second entry of the SWORK
  126. *> matrix, and no error message related LWORK is issued by XERBLA.
  127. *> \endverbatim
  128. *>
  129. *> \param[out] INFO
  130. *> \verbatim
  131. *> INFO is INTEGER
  132. *> = 0: successful exit
  133. *> < 0: if INFO = -i, the i-th argument had an illegal value
  134. *> = 1: A and B have common or very close eigenvalues; perturbed
  135. *> values were used to solve the equation (but the matrices
  136. *> A and B are unchanged).
  137. *> \endverbatim
  138. *
  139. *> \ingroup complex16SYcomputational
  140. *
  141. * =====================================================================
  142. * References:
  143. * E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of
  144. * algorithms: The triangular Sylvester equation, ACM Transactions
  145. * on Mathematical Software (TOMS), volume 29, pages 218--243.
  146. *
  147. * A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel
  148. * Solution of the Triangular Sylvester Equation. Lecture Notes in
  149. * Computer Science, vol 12043, pages 82--92, Springer.
  150. *
  151. * Contributor:
  152. * Angelika Schwarz, Umea University, Sweden.
  153. *
  154. * =====================================================================
  155. SUBROUTINE ZTRSYL3( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
  156. $ LDC, SCALE, SWORK, LDSWORK, INFO )
  157. IMPLICIT NONE
  158. *
  159. * .. Scalar Arguments ..
  160. CHARACTER TRANA, TRANB
  161. INTEGER INFO, ISGN, LDA, LDB, LDC, LDSWORK, M, N
  162. DOUBLE PRECISION SCALE
  163. * ..
  164. * .. Array Arguments ..
  165. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
  166. DOUBLE PRECISION SWORK( LDSWORK, * )
  167. * ..
  168. * .. Parameters ..
  169. DOUBLE PRECISION ZERO, ONE
  170. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  171. COMPLEX*16 CONE
  172. PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
  173. * ..
  174. * .. Local Scalars ..
  175. LOGICAL NOTRNA, NOTRNB, LQUERY
  176. INTEGER AWRK, BWRK, I, I1, I2, IINFO, J, J1, J2, JJ,
  177. $ K, K1, K2, L, L1, L2, LL, NBA, NB, NBB
  178. DOUBLE PRECISION ANRM, BIGNUM, BNRM, CNRM, SCAL, SCALOC,
  179. $ SCAMIN, SGN, XNRM, BUF, SMLNUM
  180. COMPLEX*16 CSGN
  181. * ..
  182. * .. Local Arrays ..
  183. DOUBLE PRECISION WNRM( MAX( M, N ) )
  184. * ..
  185. * .. External Functions ..
  186. LOGICAL LSAME
  187. INTEGER ILAENV
  188. DOUBLE PRECISION DLAMCH, DLARMM, ZLANGE
  189. EXTERNAL DLAMCH, DLARMM, ILAENV, LSAME, ZLANGE
  190. * ..
  191. * .. External Subroutines ..
  192. EXTERNAL XERBLA, ZDSCAL, ZGEMM, ZLASCL, ZTRSYL
  193. * ..
  194. * .. Intrinsic Functions ..
  195. INTRINSIC ABS, DBLE, DIMAG, EXPONENT, MAX, MIN
  196. * ..
  197. * .. Executable Statements ..
  198. *
  199. * Decode and Test input parameters
  200. *
  201. NOTRNA = LSAME( TRANA, 'N' )
  202. NOTRNB = LSAME( TRANB, 'N' )
  203. *
  204. * Use the same block size for all matrices.
  205. *
  206. NB = MAX( 8, ILAENV( 1, 'ZTRSYL', '', M, N, -1, -1) )
  207. *
  208. * Compute number of blocks in A and B
  209. *
  210. NBA = MAX( 1, (M + NB - 1) / NB )
  211. NBB = MAX( 1, (N + NB - 1) / NB )
  212. *
  213. * Compute workspace
  214. *
  215. INFO = 0
  216. LQUERY = ( LDSWORK.EQ.-1 )
  217. IF( LQUERY ) THEN
  218. LDSWORK = 2
  219. SWORK(1,1) = MAX( NBA, NBB )
  220. SWORK(2,1) = 2 * NBB + NBA
  221. END IF
  222. *
  223. * Test the input arguments
  224. *
  225. IF( .NOT.NOTRNA .AND. .NOT. LSAME( TRANA, 'C' ) ) THEN
  226. INFO = -1
  227. ELSE IF( .NOT.NOTRNB .AND. .NOT. LSAME( TRANB, 'C' ) ) THEN
  228. INFO = -2
  229. ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
  230. INFO = -3
  231. ELSE IF( M.LT.0 ) THEN
  232. INFO = -4
  233. ELSE IF( N.LT.0 ) THEN
  234. INFO = -5
  235. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  236. INFO = -7
  237. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  238. INFO = -9
  239. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  240. INFO = -11
  241. END IF
  242. IF( INFO.NE.0 ) THEN
  243. CALL XERBLA( 'ZTRSYL3', -INFO )
  244. RETURN
  245. ELSE IF( LQUERY ) THEN
  246. RETURN
  247. END IF
  248. *
  249. * Quick return if possible
  250. *
  251. SCALE = ONE
  252. IF( M.EQ.0 .OR. N.EQ.0 )
  253. $ RETURN
  254. *
  255. * Use unblocked code for small problems or if insufficient
  256. * workspace is provided
  257. *
  258. IF( MIN( NBA, NBB ).EQ.1 .OR. LDSWORK.LT.MAX( NBA, NBB ) ) THEN
  259. CALL ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB,
  260. $ C, LDC, SCALE, INFO )
  261. RETURN
  262. END IF
  263. *
  264. * Set constants to control overflow
  265. *
  266. SMLNUM = DLAMCH( 'S' )
  267. BIGNUM = ONE / SMLNUM
  268. *
  269. * Set local scaling factors.
  270. *
  271. DO L = 1, NBB
  272. DO K = 1, NBA
  273. SWORK( K, L ) = ONE
  274. END DO
  275. END DO
  276. *
  277. * Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero.
  278. * This scaling is to ensure compatibility with TRSYL and may get flushed.
  279. *
  280. BUF = ONE
  281. *
  282. * Compute upper bounds of blocks of A and B
  283. *
  284. AWRK = NBB
  285. DO K = 1, NBA
  286. K1 = (K - 1) * NB + 1
  287. K2 = MIN( K * NB, M ) + 1
  288. DO L = K, NBA
  289. L1 = (L - 1) * NB + 1
  290. L2 = MIN( L * NB, M ) + 1
  291. IF( NOTRNA ) THEN
  292. SWORK( K, AWRK + L ) = ZLANGE( 'I', K2-K1, L2-L1,
  293. $ A( K1, L1 ), LDA, WNRM )
  294. ELSE
  295. SWORK( L, AWRK + K ) = ZLANGE( '1', K2-K1, L2-L1,
  296. $ A( K1, L1 ), LDA, WNRM )
  297. END IF
  298. END DO
  299. END DO
  300. BWRK = NBB + NBA
  301. DO K = 1, NBB
  302. K1 = (K - 1) * NB + 1
  303. K2 = MIN( K * NB, N ) + 1
  304. DO L = K, NBB
  305. L1 = (L - 1) * NB + 1
  306. L2 = MIN( L * NB, N ) + 1
  307. IF( NOTRNB ) THEN
  308. SWORK( K, BWRK + L ) = ZLANGE( 'I', K2-K1, L2-L1,
  309. $ B( K1, L1 ), LDB, WNRM )
  310. ELSE
  311. SWORK( L, BWRK + K ) = ZLANGE( '1', K2-K1, L2-L1,
  312. $ B( K1, L1 ), LDB, WNRM )
  313. END IF
  314. END DO
  315. END DO
  316. *
  317. SGN = DBLE( ISGN )
  318. CSGN = DCMPLX( SGN, ZERO )
  319. *
  320. IF( NOTRNA .AND. NOTRNB ) THEN
  321. *
  322. * Solve A*X + ISGN*X*B = scale*C.
  323. *
  324. * The (K,L)th block of X is determined starting from
  325. * bottom-left corner column by column by
  326. *
  327. * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
  328. *
  329. * Where
  330. * M L-1
  331. * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)].
  332. * I=K+1 J=1
  333. *
  334. * Start loop over block rows (index = K) and block columns (index = L)
  335. *
  336. DO K = NBA, 1, -1
  337. *
  338. * K1: row index of the first row in X( K, L )
  339. * K2: row index of the first row in X( K+1, L )
  340. * so the K2 - K1 is the column count of the block X( K, L )
  341. *
  342. K1 = (K - 1) * NB + 1
  343. K2 = MIN( K * NB, M ) + 1
  344. DO L = 1, NBB
  345. *
  346. * L1: column index of the first column in X( K, L )
  347. * L2: column index of the first column in X( K, L + 1)
  348. * so that L2 - L1 is the row count of the block X( K, L )
  349. *
  350. L1 = (L - 1) * NB + 1
  351. L2 = MIN( L * NB, N ) + 1
  352. *
  353. CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
  354. $ A( K1, K1 ), LDA,
  355. $ B( L1, L1 ), LDB,
  356. $ C( K1, L1 ), LDC, SCALOC, IINFO )
  357. INFO = MAX( INFO, IINFO )
  358. *
  359. IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
  360. IF( SCALOC .EQ. ZERO ) THEN
  361. * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
  362. * is larger than the product of BIGNUM**2 and cannot be
  363. * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
  364. * Mark the computation as pointless.
  365. BUF = ZERO
  366. ELSE
  367. BUF = BUF*2.D0**EXPONENT( SCALOC )
  368. END IF
  369. DO JJ = 1, NBB
  370. DO LL = 1, NBA
  371. * Bound by BIGNUM to not introduce Inf. The value
  372. * is irrelevant; corresponding entries of the
  373. * solution will be flushed in consistency scaling.
  374. SWORK( LL, JJ ) = MIN( BIGNUM,
  375. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  376. END DO
  377. END DO
  378. END IF
  379. SWORK( K, L ) = SCALOC * SWORK( K, L )
  380. XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
  381. $ WNRM )
  382. *
  383. DO I = K - 1, 1, -1
  384. *
  385. * C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
  386. *
  387. I1 = (I - 1) * NB + 1
  388. I2 = MIN( I * NB, M ) + 1
  389. *
  390. * Compute scaling factor to survive the linear update
  391. * simulating consistent scaling.
  392. *
  393. CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
  394. $ LDC, WNRM )
  395. SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
  396. CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
  397. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  398. ANRM = SWORK( I, AWRK + K )
  399. SCALOC = DLARMM( ANRM, XNRM, CNRM )
  400. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  401. * Use second scaling factor to prevent flushing to zero.
  402. BUF = BUF*2.D0**EXPONENT( SCALOC )
  403. DO JJ = 1, NBB
  404. DO LL = 1, NBA
  405. SWORK( LL, JJ ) = MIN( BIGNUM,
  406. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  407. END DO
  408. END DO
  409. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  410. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  411. END IF
  412. CNRM = CNRM * SCALOC
  413. XNRM = XNRM * SCALOC
  414. *
  415. * Simultaneously apply the robust update factor and the
  416. * consistency scaling factor to C( I, L ) and C( K, L ).
  417. *
  418. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  419. IF( SCAL .NE. ONE ) THEN
  420. DO JJ = L1, L2-1
  421. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1)
  422. END DO
  423. ENDIF
  424. *
  425. SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
  426. IF( SCAL .NE. ONE ) THEN
  427. DO LL = L1, L2-1
  428. CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1)
  429. END DO
  430. ENDIF
  431. *
  432. * Record current scaling factor
  433. *
  434. SWORK( K, L ) = SCAMIN * SCALOC
  435. SWORK( I, L ) = SCAMIN * SCALOC
  436. *
  437. CALL ZGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -CONE,
  438. $ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
  439. $ CONE, C( I1, L1 ), LDC )
  440. *
  441. END DO
  442. *
  443. DO J = L + 1, NBB
  444. *
  445. * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
  446. *
  447. J1 = (J - 1) * NB + 1
  448. J2 = MIN( J * NB, N ) + 1
  449. *
  450. * Compute scaling factor to survive the linear update
  451. * simulating consistent scaling.
  452. *
  453. CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
  454. $ LDC, WNRM )
  455. SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
  456. CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
  457. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  458. BNRM = SWORK(L, BWRK + J)
  459. SCALOC = DLARMM( BNRM, XNRM, CNRM )
  460. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  461. * Use second scaling factor to prevent flushing to zero.
  462. BUF = BUF*2.D0**EXPONENT( SCALOC )
  463. DO JJ = 1, NBB
  464. DO LL = 1, NBA
  465. SWORK( LL, JJ ) = MIN( BIGNUM,
  466. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  467. END DO
  468. END DO
  469. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  470. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  471. END IF
  472. CNRM = CNRM * SCALOC
  473. XNRM = XNRM * SCALOC
  474. *
  475. * Simultaneously apply the robust update factor and the
  476. * consistency scaling factor to C( K, J ) and C( K, L).
  477. *
  478. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  479. IF( SCAL .NE. ONE ) THEN
  480. DO LL = L1, L2-1
  481. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  482. END DO
  483. ENDIF
  484. *
  485. SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
  486. IF( SCAL .NE. ONE ) THEN
  487. DO JJ = J1, J2-1
  488. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
  489. END DO
  490. ENDIF
  491. *
  492. * Record current scaling factor
  493. *
  494. SWORK( K, L ) = SCAMIN * SCALOC
  495. SWORK( K, J ) = SCAMIN * SCALOC
  496. *
  497. CALL ZGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -CSGN,
  498. $ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
  499. $ CONE, C( K1, J1 ), LDC )
  500. END DO
  501. END DO
  502. END DO
  503. ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
  504. *
  505. * Solve A**H *X + ISGN*X*B = scale*C.
  506. *
  507. * The (K,L)th block of X is determined starting from
  508. * upper-left corner column by column by
  509. *
  510. * A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
  511. *
  512. * Where
  513. * K-1 L-1
  514. * R(K,L) = SUM [A(I,K)**H*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]
  515. * I=1 J=1
  516. *
  517. * Start loop over block rows (index = K) and block columns (index = L)
  518. *
  519. DO K = 1, NBA
  520. *
  521. * K1: row index of the first row in X( K, L )
  522. * K2: row index of the first row in X( K+1, L )
  523. * so the K2 - K1 is the column count of the block X( K, L )
  524. *
  525. K1 = (K - 1) * NB + 1
  526. K2 = MIN( K * NB, M ) + 1
  527. DO L = 1, NBB
  528. *
  529. * L1: column index of the first column in X( K, L )
  530. * L2: column index of the first column in X( K, L + 1)
  531. * so that L2 - L1 is the row count of the block X( K, L )
  532. *
  533. L1 = (L - 1) * NB + 1
  534. L2 = MIN( L * NB, N ) + 1
  535. *
  536. CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
  537. $ A( K1, K1 ), LDA,
  538. $ B( L1, L1 ), LDB,
  539. $ C( K1, L1 ), LDC, SCALOC, IINFO )
  540. INFO = MAX( INFO, IINFO )
  541. *
  542. IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
  543. IF( SCALOC .EQ. ZERO ) THEN
  544. * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
  545. * is larger than the product of BIGNUM**2 and cannot be
  546. * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
  547. * Mark the computation as pointless.
  548. BUF = ZERO
  549. ELSE
  550. * Use second scaling factor to prevent flushing to zero.
  551. BUF = BUF*2.D0**EXPONENT( SCALOC )
  552. END IF
  553. DO JJ = 1, NBB
  554. DO LL = 1, NBA
  555. * Bound by BIGNUM to not introduce Inf. The value
  556. * is irrelevant; corresponding entries of the
  557. * solution will be flushed in consistency scaling.
  558. SWORK( LL, JJ ) = MIN( BIGNUM,
  559. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  560. END DO
  561. END DO
  562. END IF
  563. SWORK( K, L ) = SCALOC * SWORK( K, L )
  564. XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
  565. $ WNRM )
  566. *
  567. DO I = K + 1, NBA
  568. *
  569. * C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L )
  570. *
  571. I1 = (I - 1) * NB + 1
  572. I2 = MIN( I * NB, M ) + 1
  573. *
  574. * Compute scaling factor to survive the linear update
  575. * simulating consistent scaling.
  576. *
  577. CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
  578. $ LDC, WNRM )
  579. SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
  580. CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
  581. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  582. ANRM = SWORK( I, AWRK + K )
  583. SCALOC = DLARMM( ANRM, XNRM, CNRM )
  584. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  585. * Use second scaling factor to prevent flushing to zero.
  586. BUF = BUF*2.D0**EXPONENT( SCALOC )
  587. DO JJ = 1, NBB
  588. DO LL = 1, NBA
  589. SWORK( LL, JJ ) = MIN( BIGNUM,
  590. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  591. END DO
  592. END DO
  593. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  594. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  595. END IF
  596. CNRM = CNRM * SCALOC
  597. XNRM = XNRM * SCALOC
  598. *
  599. * Simultaneously apply the robust update factor and the
  600. * consistency scaling factor to to C( I, L ) and C( K, L).
  601. *
  602. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  603. IF( SCAL .NE. ONE ) THEN
  604. DO LL = L1, L2-1
  605. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  606. END DO
  607. ENDIF
  608. *
  609. SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
  610. IF( SCAL .NE. ONE ) THEN
  611. DO LL = L1, L2-1
  612. CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
  613. END DO
  614. ENDIF
  615. *
  616. * Record current scaling factor
  617. *
  618. SWORK( K, L ) = SCAMIN * SCALOC
  619. SWORK( I, L ) = SCAMIN * SCALOC
  620. *
  621. CALL ZGEMM( 'C', 'N', I2-I1, L2-L1, K2-K1, -CONE,
  622. $ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
  623. $ CONE, C( I1, L1 ), LDC )
  624. END DO
  625. *
  626. DO J = L + 1, NBB
  627. *
  628. * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
  629. *
  630. J1 = (J - 1) * NB + 1
  631. J2 = MIN( J * NB, N ) + 1
  632. *
  633. * Compute scaling factor to survive the linear update
  634. * simulating consistent scaling.
  635. *
  636. CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
  637. $ LDC, WNRM )
  638. SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
  639. CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
  640. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  641. BNRM = SWORK( L, BWRK + J )
  642. SCALOC = DLARMM( BNRM, XNRM, CNRM )
  643. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  644. * Use second scaling factor to prevent flushing to zero.
  645. BUF = BUF*2.D0**EXPONENT( SCALOC )
  646. DO JJ = 1, NBB
  647. DO LL = 1, NBA
  648. SWORK( LL, JJ ) = MIN( BIGNUM,
  649. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  650. END DO
  651. END DO
  652. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  653. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  654. END IF
  655. CNRM = CNRM * SCALOC
  656. XNRM = XNRM * SCALOC
  657. *
  658. * Simultaneously apply the robust update factor and the
  659. * consistency scaling factor to to C( K, J ) and C( K, L).
  660. *
  661. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  662. IF( SCAL .NE. ONE ) THEN
  663. DO LL = L1, L2-1
  664. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  665. END DO
  666. ENDIF
  667. *
  668. SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
  669. IF( SCAL .NE. ONE ) THEN
  670. DO JJ = J1, J2-1
  671. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
  672. END DO
  673. ENDIF
  674. *
  675. * Record current scaling factor
  676. *
  677. SWORK( K, L ) = SCAMIN * SCALOC
  678. SWORK( K, J ) = SCAMIN * SCALOC
  679. *
  680. CALL ZGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -CSGN,
  681. $ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
  682. $ CONE, C( K1, J1 ), LDC )
  683. END DO
  684. END DO
  685. END DO
  686. ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
  687. *
  688. * Solve A**H *X + ISGN*X*B**H = scale*C.
  689. *
  690. * The (K,L)th block of X is determined starting from
  691. * top-right corner column by column by
  692. *
  693. * A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L)
  694. *
  695. * Where
  696. * K-1 N
  697. * R(K,L) = SUM [A(I,K)**H*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H].
  698. * I=1 J=L+1
  699. *
  700. * Start loop over block rows (index = K) and block columns (index = L)
  701. *
  702. DO K = 1, NBA
  703. *
  704. * K1: row index of the first row in X( K, L )
  705. * K2: row index of the first row in X( K+1, L )
  706. * so the K2 - K1 is the column count of the block X( K, L )
  707. *
  708. K1 = (K - 1) * NB + 1
  709. K2 = MIN( K * NB, M ) + 1
  710. DO L = NBB, 1, -1
  711. *
  712. * L1: column index of the first column in X( K, L )
  713. * L2: column index of the first column in X( K, L + 1)
  714. * so that L2 - L1 is the row count of the block X( K, L )
  715. *
  716. L1 = (L - 1) * NB + 1
  717. L2 = MIN( L * NB, N ) + 1
  718. *
  719. CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
  720. $ A( K1, K1 ), LDA,
  721. $ B( L1, L1 ), LDB,
  722. $ C( K1, L1 ), LDC, SCALOC, IINFO )
  723. INFO = MAX( INFO, IINFO )
  724. *
  725. IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
  726. IF( SCALOC .EQ. ZERO ) THEN
  727. * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
  728. * is larger than the product of BIGNUM**2 and cannot be
  729. * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
  730. * Mark the computation as pointless.
  731. BUF = ZERO
  732. ELSE
  733. * Use second scaling factor to prevent flushing to zero.
  734. BUF = BUF*2.D0**EXPONENT( SCALOC )
  735. END IF
  736. DO JJ = 1, NBB
  737. DO LL = 1, NBA
  738. * Bound by BIGNUM to not introduce Inf. The value
  739. * is irrelevant; corresponding entries of the
  740. * solution will be flushed in consistency scaling.
  741. SWORK( LL, JJ ) = MIN( BIGNUM,
  742. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  743. END DO
  744. END DO
  745. END IF
  746. SWORK( K, L ) = SCALOC * SWORK( K, L )
  747. XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
  748. $ WNRM )
  749. *
  750. DO I = K + 1, NBA
  751. *
  752. * C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L )
  753. *
  754. I1 = (I - 1) * NB + 1
  755. I2 = MIN( I * NB, M ) + 1
  756. *
  757. * Compute scaling factor to survive the linear update
  758. * simulating consistent scaling.
  759. *
  760. CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
  761. $ LDC, WNRM )
  762. SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
  763. CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
  764. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  765. ANRM = SWORK( I, AWRK + K )
  766. SCALOC = DLARMM( ANRM, XNRM, CNRM )
  767. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  768. * Use second scaling factor to prevent flushing to zero.
  769. BUF = BUF*2.D0**EXPONENT( SCALOC )
  770. DO JJ = 1, NBB
  771. DO LL = 1, NBA
  772. SWORK( LL, JJ ) = MIN( BIGNUM,
  773. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  774. END DO
  775. END DO
  776. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  777. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  778. END IF
  779. CNRM = CNRM * SCALOC
  780. XNRM = XNRM * SCALOC
  781. *
  782. * Simultaneously apply the robust update factor and the
  783. * consistency scaling factor to C( I, L ) and C( K, L).
  784. *
  785. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  786. IF( SCAL .NE. ONE ) THEN
  787. DO LL = L1, L2-1
  788. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  789. END DO
  790. ENDIF
  791. *
  792. SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
  793. IF( SCAL .NE. ONE ) THEN
  794. DO LL = L1, L2-1
  795. CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
  796. END DO
  797. ENDIF
  798. *
  799. * Record current scaling factor
  800. *
  801. SWORK( K, L ) = SCAMIN * SCALOC
  802. SWORK( I, L ) = SCAMIN * SCALOC
  803. *
  804. CALL ZGEMM( 'C', 'N', I2-I1, L2-L1, K2-K1, -CONE,
  805. $ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
  806. $ CONE, C( I1, L1 ), LDC )
  807. END DO
  808. *
  809. DO J = 1, L - 1
  810. *
  811. * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H
  812. *
  813. J1 = (J - 1) * NB + 1
  814. J2 = MIN( J * NB, N ) + 1
  815. *
  816. * Compute scaling factor to survive the linear update
  817. * simulating consistent scaling.
  818. *
  819. CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
  820. $ LDC, WNRM )
  821. SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
  822. CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
  823. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  824. BNRM = SWORK( L, BWRK + J )
  825. SCALOC = DLARMM( BNRM, XNRM, CNRM )
  826. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  827. * Use second scaling factor to prevent flushing to zero.
  828. BUF = BUF*2.D0**EXPONENT( SCALOC )
  829. DO JJ = 1, NBB
  830. DO LL = 1, NBA
  831. SWORK( LL, JJ ) = MIN( BIGNUM,
  832. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  833. END DO
  834. END DO
  835. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  836. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  837. END IF
  838. CNRM = CNRM * SCALOC
  839. XNRM = XNRM * SCALOC
  840. *
  841. * Simultaneously apply the robust update factor and the
  842. * consistency scaling factor to C( K, J ) and C( K, L).
  843. *
  844. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  845. IF( SCAL .NE. ONE ) THEN
  846. DO LL = L1, L2-1
  847. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1)
  848. END DO
  849. ENDIF
  850. *
  851. SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
  852. IF( SCAL .NE. ONE ) THEN
  853. DO JJ = J1, J2-1
  854. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
  855. END DO
  856. ENDIF
  857. *
  858. * Record current scaling factor
  859. *
  860. SWORK( K, L ) = SCAMIN * SCALOC
  861. SWORK( K, J ) = SCAMIN * SCALOC
  862. *
  863. CALL ZGEMM( 'N', 'C', K2-K1, J2-J1, L2-L1, -CSGN,
  864. $ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
  865. $ CONE, C( K1, J1 ), LDC )
  866. END DO
  867. END DO
  868. END DO
  869. ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
  870. *
  871. * Solve A*X + ISGN*X*B**H = scale*C.
  872. *
  873. * The (K,L)th block of X is determined starting from
  874. * bottom-right corner column by column by
  875. *
  876. * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L)
  877. *
  878. * Where
  879. * M N
  880. * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H].
  881. * I=K+1 J=L+1
  882. *
  883. * Start loop over block rows (index = K) and block columns (index = L)
  884. *
  885. DO K = NBA, 1, -1
  886. *
  887. * K1: row index of the first row in X( K, L )
  888. * K2: row index of the first row in X( K+1, L )
  889. * so the K2 - K1 is the column count of the block X( K, L )
  890. *
  891. K1 = (K - 1) * NB + 1
  892. K2 = MIN( K * NB, M ) + 1
  893. DO L = NBB, 1, -1
  894. *
  895. * L1: column index of the first column in X( K, L )
  896. * L2: column index of the first column in X( K, L + 1)
  897. * so that L2 - L1 is the row count of the block X( K, L )
  898. *
  899. L1 = (L - 1) * NB + 1
  900. L2 = MIN( L * NB, N ) + 1
  901. *
  902. CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
  903. $ A( K1, K1 ), LDA,
  904. $ B( L1, L1 ), LDB,
  905. $ C( K1, L1 ), LDC, SCALOC, IINFO )
  906. INFO = MAX( INFO, IINFO )
  907. *
  908. IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
  909. IF( SCALOC .EQ. ZERO ) THEN
  910. * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
  911. * is larger than the product of BIGNUM**2 and cannot be
  912. * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
  913. * Mark the computation as pointless.
  914. BUF = ZERO
  915. ELSE
  916. * Use second scaling factor to prevent flushing to zero.
  917. BUF = BUF*2.D0**EXPONENT( SCALOC )
  918. END IF
  919. DO JJ = 1, NBB
  920. DO LL = 1, NBA
  921. * Bound by BIGNUM to not introduce Inf. The value
  922. * is irrelevant; corresponding entries of the
  923. * solution will be flushed in consistency scaling.
  924. SWORK( LL, JJ ) = MIN( BIGNUM,
  925. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  926. END DO
  927. END DO
  928. END IF
  929. SWORK( K, L ) = SCALOC * SWORK( K, L )
  930. XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
  931. $ WNRM )
  932. *
  933. DO I = 1, K - 1
  934. *
  935. * C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
  936. *
  937. I1 = (I - 1) * NB + 1
  938. I2 = MIN( I * NB, M ) + 1
  939. *
  940. * Compute scaling factor to survive the linear update
  941. * simulating consistent scaling.
  942. *
  943. CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
  944. $ LDC, WNRM )
  945. SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
  946. CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
  947. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  948. ANRM = SWORK( I, AWRK + K )
  949. SCALOC = DLARMM( ANRM, XNRM, CNRM )
  950. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  951. * Use second scaling factor to prevent flushing to zero.
  952. BUF = BUF*2.D0**EXPONENT( SCALOC )
  953. DO JJ = 1, NBB
  954. DO LL = 1, NBA
  955. SWORK( LL, JJ ) = MIN( BIGNUM,
  956. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  957. END DO
  958. END DO
  959. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  960. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  961. END IF
  962. CNRM = CNRM * SCALOC
  963. XNRM = XNRM * SCALOC
  964. *
  965. * Simultaneously apply the robust update factor and the
  966. * consistency scaling factor to C( I, L ) and C( K, L).
  967. *
  968. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  969. IF( SCAL .NE. ONE ) THEN
  970. DO LL = L1, L2-1
  971. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  972. END DO
  973. ENDIF
  974. *
  975. SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
  976. IF( SCAL .NE. ONE ) THEN
  977. DO LL = L1, L2-1
  978. CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
  979. END DO
  980. ENDIF
  981. *
  982. * Record current scaling factor
  983. *
  984. SWORK( K, L ) = SCAMIN * SCALOC
  985. SWORK( I, L ) = SCAMIN * SCALOC
  986. *
  987. CALL ZGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -CONE,
  988. $ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
  989. $ CONE, C( I1, L1 ), LDC )
  990. *
  991. END DO
  992. *
  993. DO J = 1, L - 1
  994. *
  995. * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H
  996. *
  997. J1 = (J - 1) * NB + 1
  998. J2 = MIN( J * NB, N ) + 1
  999. *
  1000. * Compute scaling factor to survive the linear update
  1001. * simulating consistent scaling.
  1002. *
  1003. CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
  1004. $ LDC, WNRM )
  1005. SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
  1006. CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
  1007. XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
  1008. BNRM = SWORK( L, BWRK + J )
  1009. SCALOC = DLARMM( BNRM, XNRM, CNRM )
  1010. IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
  1011. * Use second scaling factor to prevent flushing to zero.
  1012. BUF = BUF*2.D0**EXPONENT( SCALOC )
  1013. DO JJ = 1, NBB
  1014. DO LL = 1, NBA
  1015. SWORK( LL, JJ ) = MIN( BIGNUM,
  1016. $ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
  1017. END DO
  1018. END DO
  1019. SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
  1020. SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
  1021. END IF
  1022. CNRM = CNRM * SCALOC
  1023. XNRM = XNRM * SCALOC
  1024. *
  1025. * Simultaneously apply the robust update factor and the
  1026. * consistency scaling factor to C( K, J ) and C( K, L).
  1027. *
  1028. SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
  1029. IF( SCAL .NE. ONE ) THEN
  1030. DO JJ = L1, L2-1
  1031. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
  1032. END DO
  1033. ENDIF
  1034. *
  1035. SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
  1036. IF( SCAL .NE. ONE ) THEN
  1037. DO JJ = J1, J2-1
  1038. CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
  1039. END DO
  1040. ENDIF
  1041. *
  1042. * Record current scaling factor
  1043. *
  1044. SWORK( K, L ) = SCAMIN * SCALOC
  1045. SWORK( K, J ) = SCAMIN * SCALOC
  1046. *
  1047. CALL ZGEMM( 'N', 'C', K2-K1, J2-J1, L2-L1, -CSGN,
  1048. $ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
  1049. $ CONE, C( K1, J1 ), LDC )
  1050. END DO
  1051. END DO
  1052. END DO
  1053. *
  1054. END IF
  1055. *
  1056. * Reduce local scaling factors
  1057. *
  1058. SCALE = SWORK( 1, 1 )
  1059. DO K = 1, NBA
  1060. DO L = 1, NBB
  1061. SCALE = MIN( SCALE, SWORK( K, L ) )
  1062. END DO
  1063. END DO
  1064. IF( SCALE .EQ. ZERO ) THEN
  1065. *
  1066. * The magnitude of the largest entry of the solution is larger
  1067. * than the product of BIGNUM**2 and cannot be represented in the
  1068. * form (1/SCALE)*X if SCALE is DOUBLE PRECISION. Set SCALE to
  1069. * zero and give up.
  1070. *
  1071. SWORK(1,1) = MAX( NBA, NBB )
  1072. SWORK(2,1) = 2 * NBB + NBA
  1073. RETURN
  1074. END IF
  1075. *
  1076. * Realize consistent scaling
  1077. *
  1078. DO K = 1, NBA
  1079. K1 = (K - 1) * NB + 1
  1080. K2 = MIN( K * NB, M ) + 1
  1081. DO L = 1, NBB
  1082. L1 = (L - 1) * NB + 1
  1083. L2 = MIN( L * NB, N ) + 1
  1084. SCAL = SCALE / SWORK( K, L )
  1085. IF( SCAL .NE. ONE ) THEN
  1086. DO LL = L1, L2-1
  1087. CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
  1088. END DO
  1089. ENDIF
  1090. END DO
  1091. END DO
  1092. *
  1093. IF( BUF .NE. ONE .AND. BUF.GT.ZERO ) THEN
  1094. *
  1095. * Decrease SCALE as much as possible.
  1096. *
  1097. SCALOC = MIN( SCALE / SMLNUM, ONE / BUF )
  1098. BUF = BUF * SCALOC
  1099. SCALE = SCALE / SCALOC
  1100. END IF
  1101. *
  1102. IF( BUF.NE.ONE .AND. BUF.GT.ZERO ) THEN
  1103. *
  1104. * In case of overly aggressive scaling during the computation,
  1105. * flushing of the global scale factor may be prevented by
  1106. * undoing some of the scaling. This step is to ensure that
  1107. * this routine flushes only scale factors that TRSYL also
  1108. * flushes and be usable as a drop-in replacement.
  1109. *
  1110. * How much can the normwise largest entry be upscaled?
  1111. *
  1112. SCAL = MAX( ABS( DBLE( C( 1, 1 ) ) ),
  1113. $ ABS( DIMAG( C ( 1, 1 ) ) ) )
  1114. DO K = 1, M
  1115. DO L = 1, N
  1116. SCAL = MAX( SCAL, ABS( DBLE ( C( K, L ) ) ),
  1117. $ ABS( DIMAG ( C( K, L ) ) ) )
  1118. END DO
  1119. END DO
  1120. *
  1121. * Increase BUF as close to 1 as possible and apply scaling.
  1122. *
  1123. SCALOC = MIN( BIGNUM / SCAL, ONE / BUF )
  1124. BUF = BUF * SCALOC
  1125. CALL ZLASCL( 'G', -1, -1, ONE, SCALOC, M, N, C, LDC, IINFO )
  1126. END IF
  1127. *
  1128. * Combine with buffer scaling factor. SCALE will be flushed if
  1129. * BUF is less than one here.
  1130. *
  1131. SCALE = SCALE * BUF
  1132. *
  1133. * Restore workspace dimensions
  1134. *
  1135. SWORK(1,1) = MAX( NBA, NBB )
  1136. SWORK(2,1) = 2 * NBB + NBA
  1137. *
  1138. RETURN
  1139. *
  1140. * End of ZTRSYL3
  1141. *
  1142. END