You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztgsen.f 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. *> \brief \b ZTGSEN
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTGSEN + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
  22. * ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
  23. * WORK, LWORK, IWORK, LIWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * LOGICAL WANTQ, WANTZ
  27. * INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
  28. * $ M, N
  29. * DOUBLE PRECISION PL, PR
  30. * ..
  31. * .. Array Arguments ..
  32. * LOGICAL SELECT( * )
  33. * INTEGER IWORK( * )
  34. * DOUBLE PRECISION DIF( * )
  35. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  36. * $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
  37. * ..
  38. *
  39. *
  40. *> \par Purpose:
  41. * =============
  42. *>
  43. *> \verbatim
  44. *>
  45. *> ZTGSEN reorders the generalized Schur decomposition of a complex
  46. *> matrix pair (A, B) (in terms of an unitary equivalence trans-
  47. *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
  48. *> appears in the leading diagonal blocks of the pair (A,B). The leading
  49. *> columns of Q and Z form unitary bases of the corresponding left and
  50. *> right eigenspaces (deflating subspaces). (A, B) must be in
  51. *> generalized Schur canonical form, that is, A and B are both upper
  52. *> triangular.
  53. *>
  54. *> ZTGSEN also computes the generalized eigenvalues
  55. *>
  56. *> w(j)= ALPHA(j) / BETA(j)
  57. *>
  58. *> of the reordered matrix pair (A, B).
  59. *>
  60. *> Optionally, the routine computes estimates of reciprocal condition
  61. *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
  62. *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
  63. *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
  64. *> the selected cluster and the eigenvalues outside the cluster, resp.,
  65. *> and norms of "projections" onto left and right eigenspaces w.r.t.
  66. *> the selected cluster in the (1,1)-block.
  67. *>
  68. *> \endverbatim
  69. *
  70. * Arguments:
  71. * ==========
  72. *
  73. *> \param[in] IJOB
  74. *> \verbatim
  75. *> IJOB is INTEGER
  76. *> Specifies whether condition numbers are required for the
  77. *> cluster of eigenvalues (PL and PR) or the deflating subspaces
  78. *> (Difu and Difl):
  79. *> =0: Only reorder w.r.t. SELECT. No extras.
  80. *> =1: Reciprocal of norms of "projections" onto left and right
  81. *> eigenspaces w.r.t. the selected cluster (PL and PR).
  82. *> =2: Upper bounds on Difu and Difl. F-norm-based estimate
  83. *> (DIF(1:2)).
  84. *> =3: Estimate of Difu and Difl. 1-norm-based estimate
  85. *> (DIF(1:2)).
  86. *> About 5 times as expensive as IJOB = 2.
  87. *> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
  88. *> version to get it all.
  89. *> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
  90. *> \endverbatim
  91. *>
  92. *> \param[in] WANTQ
  93. *> \verbatim
  94. *> WANTQ is LOGICAL
  95. *> .TRUE. : update the left transformation matrix Q;
  96. *> .FALSE.: do not update Q.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] WANTZ
  100. *> \verbatim
  101. *> WANTZ is LOGICAL
  102. *> .TRUE. : update the right transformation matrix Z;
  103. *> .FALSE.: do not update Z.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] SELECT
  107. *> \verbatim
  108. *> SELECT is LOGICAL array, dimension (N)
  109. *> SELECT specifies the eigenvalues in the selected cluster. To
  110. *> select an eigenvalue w(j), SELECT(j) must be set to
  111. *> .TRUE..
  112. *> \endverbatim
  113. *>
  114. *> \param[in] N
  115. *> \verbatim
  116. *> N is INTEGER
  117. *> The order of the matrices A and B. N >= 0.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] A
  121. *> \verbatim
  122. *> A is COMPLEX*16 array, dimension(LDA,N)
  123. *> On entry, the upper triangular matrix A, in generalized
  124. *> Schur canonical form.
  125. *> On exit, A is overwritten by the reordered matrix A.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDA
  129. *> \verbatim
  130. *> LDA is INTEGER
  131. *> The leading dimension of the array A. LDA >= max(1,N).
  132. *> \endverbatim
  133. *>
  134. *> \param[in,out] B
  135. *> \verbatim
  136. *> B is COMPLEX*16 array, dimension(LDB,N)
  137. *> On entry, the upper triangular matrix B, in generalized
  138. *> Schur canonical form.
  139. *> On exit, B is overwritten by the reordered matrix B.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LDB
  143. *> \verbatim
  144. *> LDB is INTEGER
  145. *> The leading dimension of the array B. LDB >= max(1,N).
  146. *> \endverbatim
  147. *>
  148. *> \param[out] ALPHA
  149. *> \verbatim
  150. *> ALPHA is COMPLEX*16 array, dimension (N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] BETA
  154. *> \verbatim
  155. *> BETA is COMPLEX*16 array, dimension (N)
  156. *>
  157. *> The diagonal elements of A and B, respectively,
  158. *> when the pair (A,B) has been reduced to generalized Schur
  159. *> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
  160. *> eigenvalues.
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] Q
  164. *> \verbatim
  165. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  166. *> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
  167. *> On exit, Q has been postmultiplied by the left unitary
  168. *> transformation matrix which reorder (A, B); The leading M
  169. *> columns of Q form orthonormal bases for the specified pair of
  170. *> left eigenspaces (deflating subspaces).
  171. *> If WANTQ = .FALSE., Q is not referenced.
  172. *> \endverbatim
  173. *>
  174. *> \param[in] LDQ
  175. *> \verbatim
  176. *> LDQ is INTEGER
  177. *> The leading dimension of the array Q. LDQ >= 1.
  178. *> If WANTQ = .TRUE., LDQ >= N.
  179. *> \endverbatim
  180. *>
  181. *> \param[in,out] Z
  182. *> \verbatim
  183. *> Z is COMPLEX*16 array, dimension (LDZ,N)
  184. *> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
  185. *> On exit, Z has been postmultiplied by the left unitary
  186. *> transformation matrix which reorder (A, B); The leading M
  187. *> columns of Z form orthonormal bases for the specified pair of
  188. *> left eigenspaces (deflating subspaces).
  189. *> If WANTZ = .FALSE., Z is not referenced.
  190. *> \endverbatim
  191. *>
  192. *> \param[in] LDZ
  193. *> \verbatim
  194. *> LDZ is INTEGER
  195. *> The leading dimension of the array Z. LDZ >= 1.
  196. *> If WANTZ = .TRUE., LDZ >= N.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] M
  200. *> \verbatim
  201. *> M is INTEGER
  202. *> The dimension of the specified pair of left and right
  203. *> eigenspaces, (deflating subspaces) 0 <= M <= N.
  204. *> \endverbatim
  205. *>
  206. *> \param[out] PL
  207. *> \verbatim
  208. *> PL is DOUBLE PRECISION
  209. *> \endverbatim
  210. *>
  211. *> \param[out] PR
  212. *> \verbatim
  213. *> PR is DOUBLE PRECISION
  214. *>
  215. *> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
  216. *> reciprocal of the norm of "projections" onto left and right
  217. *> eigenspace with respect to the selected cluster.
  218. *> 0 < PL, PR <= 1.
  219. *> If M = 0 or M = N, PL = PR = 1.
  220. *> If IJOB = 0, 2 or 3 PL, PR are not referenced.
  221. *> \endverbatim
  222. *>
  223. *> \param[out] DIF
  224. *> \verbatim
  225. *> DIF is DOUBLE PRECISION array, dimension (2).
  226. *> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
  227. *> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
  228. *> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
  229. *> estimates of Difu and Difl, computed using reversed
  230. *> communication with ZLACN2.
  231. *> If M = 0 or N, DIF(1:2) = F-norm([A, B]).
  232. *> If IJOB = 0 or 1, DIF is not referenced.
  233. *> \endverbatim
  234. *>
  235. *> \param[out] WORK
  236. *> \verbatim
  237. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  238. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  239. *> \endverbatim
  240. *>
  241. *> \param[in] LWORK
  242. *> \verbatim
  243. *> LWORK is INTEGER
  244. *> The dimension of the array WORK. LWORK >= 1
  245. *> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
  246. *> If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
  247. *>
  248. *> If LWORK = -1, then a workspace query is assumed; the routine
  249. *> only calculates the optimal size of the WORK array, returns
  250. *> this value as the first entry of the WORK array, and no error
  251. *> message related to LWORK is issued by XERBLA.
  252. *> \endverbatim
  253. *>
  254. *> \param[out] IWORK
  255. *> \verbatim
  256. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  257. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  258. *> \endverbatim
  259. *>
  260. *> \param[in] LIWORK
  261. *> \verbatim
  262. *> LIWORK is INTEGER
  263. *> The dimension of the array IWORK. LIWORK >= 1.
  264. *> If IJOB = 1, 2 or 4, LIWORK >= N+2;
  265. *> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
  266. *>
  267. *> If LIWORK = -1, then a workspace query is assumed; the
  268. *> routine only calculates the optimal size of the IWORK array,
  269. *> returns this value as the first entry of the IWORK array, and
  270. *> no error message related to LIWORK is issued by XERBLA.
  271. *> \endverbatim
  272. *>
  273. *> \param[out] INFO
  274. *> \verbatim
  275. *> INFO is INTEGER
  276. *> =0: Successful exit.
  277. *> <0: If INFO = -i, the i-th argument had an illegal value.
  278. *> =1: Reordering of (A, B) failed because the transformed
  279. *> matrix pair (A, B) would be too far from generalized
  280. *> Schur form; the problem is very ill-conditioned.
  281. *> (A, B) may have been partially reordered.
  282. *> If requested, 0 is returned in DIF(*), PL and PR.
  283. *> \endverbatim
  284. *
  285. * Authors:
  286. * ========
  287. *
  288. *> \author Univ. of Tennessee
  289. *> \author Univ. of California Berkeley
  290. *> \author Univ. of Colorado Denver
  291. *> \author NAG Ltd.
  292. *
  293. *> \ingroup complex16OTHERcomputational
  294. *
  295. *> \par Further Details:
  296. * =====================
  297. *>
  298. *> \verbatim
  299. *>
  300. *> ZTGSEN first collects the selected eigenvalues by computing unitary
  301. *> U and W that move them to the top left corner of (A, B). In other
  302. *> words, the selected eigenvalues are the eigenvalues of (A11, B11) in
  303. *>
  304. *> U**H*(A, B)*W = (A11 A12) (B11 B12) n1
  305. *> ( 0 A22),( 0 B22) n2
  306. *> n1 n2 n1 n2
  307. *>
  308. *> where N = n1+n2 and U**H means the conjugate transpose of U. The first
  309. *> n1 columns of U and W span the specified pair of left and right
  310. *> eigenspaces (deflating subspaces) of (A, B).
  311. *>
  312. *> If (A, B) has been obtained from the generalized real Schur
  313. *> decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
  314. *> reordered generalized Schur form of (C, D) is given by
  315. *>
  316. *> (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
  317. *>
  318. *> and the first n1 columns of Q*U and Z*W span the corresponding
  319. *> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
  320. *>
  321. *> Note that if the selected eigenvalue is sufficiently ill-conditioned,
  322. *> then its value may differ significantly from its value before
  323. *> reordering.
  324. *>
  325. *> The reciprocal condition numbers of the left and right eigenspaces
  326. *> spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  327. *> be returned in DIF(1:2), corresponding to Difu and Difl, resp.
  328. *>
  329. *> The Difu and Difl are defined as:
  330. *>
  331. *> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  332. *> and
  333. *> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
  334. *>
  335. *> where sigma-min(Zu) is the smallest singular value of the
  336. *> (2*n1*n2)-by-(2*n1*n2) matrix
  337. *>
  338. *> Zu = [ kron(In2, A11) -kron(A22**H, In1) ]
  339. *> [ kron(In2, B11) -kron(B22**H, In1) ].
  340. *>
  341. *> Here, Inx is the identity matrix of size nx and A22**H is the
  342. *> conjugate transpose of A22. kron(X, Y) is the Kronecker product between
  343. *> the matrices X and Y.
  344. *>
  345. *> When DIF(2) is small, small changes in (A, B) can cause large changes
  346. *> in the deflating subspace. An approximate (asymptotic) bound on the
  347. *> maximum angular error in the computed deflating subspaces is
  348. *>
  349. *> EPS * norm((A, B)) / DIF(2),
  350. *>
  351. *> where EPS is the machine precision.
  352. *>
  353. *> The reciprocal norm of the projectors on the left and right
  354. *> eigenspaces associated with (A11, B11) may be returned in PL and PR.
  355. *> They are computed as follows. First we compute L and R so that
  356. *> P*(A, B)*Q is block diagonal, where
  357. *>
  358. *> P = ( I -L ) n1 Q = ( I R ) n1
  359. *> ( 0 I ) n2 and ( 0 I ) n2
  360. *> n1 n2 n1 n2
  361. *>
  362. *> and (L, R) is the solution to the generalized Sylvester equation
  363. *>
  364. *> A11*R - L*A22 = -A12
  365. *> B11*R - L*B22 = -B12
  366. *>
  367. *> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  368. *> An approximate (asymptotic) bound on the average absolute error of
  369. *> the selected eigenvalues is
  370. *>
  371. *> EPS * norm((A, B)) / PL.
  372. *>
  373. *> There are also global error bounds which valid for perturbations up
  374. *> to a certain restriction: A lower bound (x) on the smallest
  375. *> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  376. *> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  377. *> (i.e. (A + E, B + F), is
  378. *>
  379. *> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
  380. *>
  381. *> An approximate bound on x can be computed from DIF(1:2), PL and PR.
  382. *>
  383. *> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  384. *> (L', R') and unperturbed (L, R) left and right deflating subspaces
  385. *> associated with the selected cluster in the (1,1)-blocks can be
  386. *> bounded as
  387. *>
  388. *> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
  389. *> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
  390. *>
  391. *> See LAPACK User's Guide section 4.11 or the following references
  392. *> for more information.
  393. *>
  394. *> Note that if the default method for computing the Frobenius-norm-
  395. *> based estimate DIF is not wanted (see ZLATDF), then the parameter
  396. *> IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
  397. *> (IJOB = 2 will be used)). See ZTGSYL for more details.
  398. *> \endverbatim
  399. *
  400. *> \par Contributors:
  401. * ==================
  402. *>
  403. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  404. *> Umea University, S-901 87 Umea, Sweden.
  405. *
  406. *> \par References:
  407. * ================
  408. *>
  409. *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  410. *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  411. *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  412. *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  413. *> \n
  414. *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  415. *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  416. *> Estimation: Theory, Algorithms and Software, Report
  417. *> UMINF - 94.04, Department of Computing Science, Umea University,
  418. *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
  419. *> To appear in Numerical Algorithms, 1996.
  420. *> \n
  421. *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  422. *> for Solving the Generalized Sylvester Equation and Estimating the
  423. *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  424. *> Department of Computing Science, Umea University, S-901 87 Umea,
  425. *> Sweden, December 1993, Revised April 1994, Also as LAPACK working
  426. *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  427. *> 1996.
  428. *>
  429. * =====================================================================
  430. SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
  431. $ ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
  432. $ WORK, LWORK, IWORK, LIWORK, INFO )
  433. *
  434. * -- LAPACK computational routine --
  435. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  436. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  437. *
  438. * .. Scalar Arguments ..
  439. LOGICAL WANTQ, WANTZ
  440. INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
  441. $ M, N
  442. DOUBLE PRECISION PL, PR
  443. * ..
  444. * .. Array Arguments ..
  445. LOGICAL SELECT( * )
  446. INTEGER IWORK( * )
  447. DOUBLE PRECISION DIF( * )
  448. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  449. $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
  450. * ..
  451. *
  452. * =====================================================================
  453. *
  454. * .. Parameters ..
  455. INTEGER IDIFJB
  456. PARAMETER ( IDIFJB = 3 )
  457. DOUBLE PRECISION ZERO, ONE
  458. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  459. * ..
  460. * .. Local Scalars ..
  461. LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
  462. INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
  463. $ N1, N2
  464. DOUBLE PRECISION DSCALE, DSUM, RDSCAL, SAFMIN
  465. COMPLEX*16 TEMP1, TEMP2
  466. * ..
  467. * .. Local Arrays ..
  468. INTEGER ISAVE( 3 )
  469. * ..
  470. * .. External Subroutines ..
  471. EXTERNAL XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
  472. $ ZTGSYL
  473. * ..
  474. * .. Intrinsic Functions ..
  475. INTRINSIC ABS, DCMPLX, DCONJG, MAX, SQRT
  476. * ..
  477. * .. External Functions ..
  478. DOUBLE PRECISION DLAMCH
  479. EXTERNAL DLAMCH
  480. * ..
  481. * .. Executable Statements ..
  482. *
  483. * Decode and test the input parameters
  484. *
  485. INFO = 0
  486. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  487. *
  488. IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
  489. INFO = -1
  490. ELSE IF( N.LT.0 ) THEN
  491. INFO = -5
  492. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  493. INFO = -7
  494. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  495. INFO = -9
  496. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  497. INFO = -13
  498. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  499. INFO = -15
  500. END IF
  501. *
  502. IF( INFO.NE.0 ) THEN
  503. CALL XERBLA( 'ZTGSEN', -INFO )
  504. RETURN
  505. END IF
  506. *
  507. IERR = 0
  508. *
  509. WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
  510. WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
  511. WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
  512. WANTD = WANTD1 .OR. WANTD2
  513. *
  514. * Set M to the dimension of the specified pair of deflating
  515. * subspaces.
  516. *
  517. M = 0
  518. IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
  519. DO 10 K = 1, N
  520. ALPHA( K ) = A( K, K )
  521. BETA( K ) = B( K, K )
  522. IF( K.LT.N ) THEN
  523. IF( SELECT( K ) )
  524. $ M = M + 1
  525. ELSE
  526. IF( SELECT( N ) )
  527. $ M = M + 1
  528. END IF
  529. 10 CONTINUE
  530. END IF
  531. *
  532. IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
  533. LWMIN = MAX( 1, 2*M*( N-M ) )
  534. LIWMIN = MAX( 1, N+2 )
  535. ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
  536. LWMIN = MAX( 1, 4*M*( N-M ) )
  537. LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
  538. ELSE
  539. LWMIN = 1
  540. LIWMIN = 1
  541. END IF
  542. *
  543. WORK( 1 ) = LWMIN
  544. IWORK( 1 ) = LIWMIN
  545. *
  546. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  547. INFO = -21
  548. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  549. INFO = -23
  550. END IF
  551. *
  552. IF( INFO.NE.0 ) THEN
  553. CALL XERBLA( 'ZTGSEN', -INFO )
  554. RETURN
  555. ELSE IF( LQUERY ) THEN
  556. RETURN
  557. END IF
  558. *
  559. * Quick return if possible.
  560. *
  561. IF( M.EQ.N .OR. M.EQ.0 ) THEN
  562. IF( WANTP ) THEN
  563. PL = ONE
  564. PR = ONE
  565. END IF
  566. IF( WANTD ) THEN
  567. DSCALE = ZERO
  568. DSUM = ONE
  569. DO 20 I = 1, N
  570. CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
  571. CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
  572. 20 CONTINUE
  573. DIF( 1 ) = DSCALE*SQRT( DSUM )
  574. DIF( 2 ) = DIF( 1 )
  575. END IF
  576. GO TO 70
  577. END IF
  578. *
  579. * Get machine constant
  580. *
  581. SAFMIN = DLAMCH( 'S' )
  582. *
  583. * Collect the selected blocks at the top-left corner of (A, B).
  584. *
  585. KS = 0
  586. DO 30 K = 1, N
  587. SWAP = SELECT( K )
  588. IF( SWAP ) THEN
  589. KS = KS + 1
  590. *
  591. * Swap the K-th block to position KS. Compute unitary Q
  592. * and Z that will swap adjacent diagonal blocks in (A, B).
  593. *
  594. IF( K.NE.KS )
  595. $ CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  596. $ LDZ, K, KS, IERR )
  597. *
  598. IF( IERR.GT.0 ) THEN
  599. *
  600. * Swap is rejected: exit.
  601. *
  602. INFO = 1
  603. IF( WANTP ) THEN
  604. PL = ZERO
  605. PR = ZERO
  606. END IF
  607. IF( WANTD ) THEN
  608. DIF( 1 ) = ZERO
  609. DIF( 2 ) = ZERO
  610. END IF
  611. GO TO 70
  612. END IF
  613. END IF
  614. 30 CONTINUE
  615. IF( WANTP ) THEN
  616. *
  617. * Solve generalized Sylvester equation for R and L:
  618. * A11 * R - L * A22 = A12
  619. * B11 * R - L * B22 = B12
  620. *
  621. N1 = M
  622. N2 = N - M
  623. I = N1 + 1
  624. CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
  625. CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
  626. $ N1 )
  627. IJB = 0
  628. CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  629. $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
  630. $ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  631. $ LWORK-2*N1*N2, IWORK, IERR )
  632. *
  633. * Estimate the reciprocal of norms of "projections" onto
  634. * left and right eigenspaces
  635. *
  636. RDSCAL = ZERO
  637. DSUM = ONE
  638. CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
  639. PL = RDSCAL*SQRT( DSUM )
  640. IF( PL.EQ.ZERO ) THEN
  641. PL = ONE
  642. ELSE
  643. PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
  644. END IF
  645. RDSCAL = ZERO
  646. DSUM = ONE
  647. CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
  648. PR = RDSCAL*SQRT( DSUM )
  649. IF( PR.EQ.ZERO ) THEN
  650. PR = ONE
  651. ELSE
  652. PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
  653. END IF
  654. END IF
  655. IF( WANTD ) THEN
  656. *
  657. * Compute estimates Difu and Difl.
  658. *
  659. IF( WANTD1 ) THEN
  660. N1 = M
  661. N2 = N - M
  662. I = N1 + 1
  663. IJB = IDIFJB
  664. *
  665. * Frobenius norm-based Difu estimate.
  666. *
  667. CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  668. $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
  669. $ N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  670. $ LWORK-2*N1*N2, IWORK, IERR )
  671. *
  672. * Frobenius norm-based Difl estimate.
  673. *
  674. CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
  675. $ N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
  676. $ N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
  677. $ LWORK-2*N1*N2, IWORK, IERR )
  678. ELSE
  679. *
  680. * Compute 1-norm-based estimates of Difu and Difl using
  681. * reversed communication with ZLACN2. In each step a
  682. * generalized Sylvester equation or a transposed variant
  683. * is solved.
  684. *
  685. KASE = 0
  686. N1 = M
  687. N2 = N - M
  688. I = N1 + 1
  689. IJB = 0
  690. MN2 = 2*N1*N2
  691. *
  692. * 1-norm-based estimate of Difu.
  693. *
  694. 40 CONTINUE
  695. CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
  696. $ ISAVE )
  697. IF( KASE.NE.0 ) THEN
  698. IF( KASE.EQ.1 ) THEN
  699. *
  700. * Solve generalized Sylvester equation
  701. *
  702. CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  703. $ WORK, N1, B, LDB, B( I, I ), LDB,
  704. $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  705. $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  706. $ IERR )
  707. ELSE
  708. *
  709. * Solve the transposed variant.
  710. *
  711. CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  712. $ WORK, N1, B, LDB, B( I, I ), LDB,
  713. $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  714. $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  715. $ IERR )
  716. END IF
  717. GO TO 40
  718. END IF
  719. DIF( 1 ) = DSCALE / DIF( 1 )
  720. *
  721. * 1-norm-based estimate of Difl.
  722. *
  723. 50 CONTINUE
  724. CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
  725. $ ISAVE )
  726. IF( KASE.NE.0 ) THEN
  727. IF( KASE.EQ.1 ) THEN
  728. *
  729. * Solve generalized Sylvester equation
  730. *
  731. CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  732. $ WORK, N2, B( I, I ), LDB, B, LDB,
  733. $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  734. $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  735. $ IERR )
  736. ELSE
  737. *
  738. * Solve the transposed variant.
  739. *
  740. CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  741. $ WORK, N2, B, LDB, B( I, I ), LDB,
  742. $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  743. $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  744. $ IERR )
  745. END IF
  746. GO TO 50
  747. END IF
  748. DIF( 2 ) = DSCALE / DIF( 2 )
  749. END IF
  750. END IF
  751. *
  752. * If B(K,K) is complex, make it real and positive (normalization
  753. * of the generalized Schur form) and Store the generalized
  754. * eigenvalues of reordered pair (A, B)
  755. *
  756. DO 60 K = 1, N
  757. DSCALE = ABS( B( K, K ) )
  758. IF( DSCALE.GT.SAFMIN ) THEN
  759. TEMP1 = DCONJG( B( K, K ) / DSCALE )
  760. TEMP2 = B( K, K ) / DSCALE
  761. B( K, K ) = DSCALE
  762. CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
  763. CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
  764. IF( WANTQ )
  765. $ CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
  766. ELSE
  767. B( K, K ) = DCMPLX( ZERO, ZERO )
  768. END IF
  769. *
  770. ALPHA( K ) = A( K, K )
  771. BETA( K ) = B( K, K )
  772. *
  773. 60 CONTINUE
  774. *
  775. 70 CONTINUE
  776. *
  777. WORK( 1 ) = LWMIN
  778. IWORK( 1 ) = LIWMIN
  779. *
  780. RETURN
  781. *
  782. * End of ZTGSEN
  783. *
  784. END