You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyevd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. *> \brief <b> SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYEVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
  22. * LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, LDA, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL A( LDA, * ), W( * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
  40. *> real symmetric matrix A. If eigenvectors are desired, it uses a
  41. *> divide and conquer algorithm.
  42. *>
  43. *> The divide and conquer algorithm makes very mild assumptions about
  44. *> floating point arithmetic. It will work on machines with a guard
  45. *> digit in add/subtract, or on those binary machines without guard
  46. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  47. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  48. *> without guard digits, but we know of none.
  49. *>
  50. *> Because of large use of BLAS of level 3, SSYEVD needs N**2 more
  51. *> workspace than SSYEVX.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] JOBZ
  58. *> \verbatim
  59. *> JOBZ is CHARACTER*1
  60. *> = 'N': Compute eigenvalues only;
  61. *> = 'V': Compute eigenvalues and eigenvectors.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> = 'U': Upper triangle of A is stored;
  68. *> = 'L': Lower triangle of A is stored.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrix A. N >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in,out] A
  78. *> \verbatim
  79. *> A is REAL array, dimension (LDA, N)
  80. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  81. *> leading N-by-N upper triangular part of A contains the
  82. *> upper triangular part of the matrix A. If UPLO = 'L',
  83. *> the leading N-by-N lower triangular part of A contains
  84. *> the lower triangular part of the matrix A.
  85. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  86. *> orthonormal eigenvectors of the matrix A.
  87. *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
  88. *> or the upper triangle (if UPLO='U') of A, including the
  89. *> diagonal, is destroyed.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDA
  93. *> \verbatim
  94. *> LDA is INTEGER
  95. *> The leading dimension of the array A. LDA >= max(1,N).
  96. *> \endverbatim
  97. *>
  98. *> \param[out] W
  99. *> \verbatim
  100. *> W is REAL array, dimension (N)
  101. *> If INFO = 0, the eigenvalues in ascending order.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] WORK
  105. *> \verbatim
  106. *> WORK is REAL array,
  107. *> dimension (LWORK)
  108. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LWORK
  112. *> \verbatim
  113. *> LWORK is INTEGER
  114. *> The dimension of the array WORK.
  115. *> If N <= 1, LWORK must be at least 1.
  116. *> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
  117. *> If JOBZ = 'V' and N > 1, LWORK must be at least
  118. *> 1 + 6*N + 2*N**2.
  119. *>
  120. *> If LWORK = -1, then a workspace query is assumed; the routine
  121. *> only calculates the optimal sizes of the WORK and IWORK
  122. *> arrays, returns these values as the first entries of the WORK
  123. *> and IWORK arrays, and no error message related to LWORK or
  124. *> LIWORK is issued by XERBLA.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] IWORK
  128. *> \verbatim
  129. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  130. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] LIWORK
  134. *> \verbatim
  135. *> LIWORK is INTEGER
  136. *> The dimension of the array IWORK.
  137. *> If N <= 1, LIWORK must be at least 1.
  138. *> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
  139. *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  140. *>
  141. *> If LIWORK = -1, then a workspace query is assumed; the
  142. *> routine only calculates the optimal sizes of the WORK and
  143. *> IWORK arrays, returns these values as the first entries of
  144. *> the WORK and IWORK arrays, and no error message related to
  145. *> LWORK or LIWORK is issued by XERBLA.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value
  153. *> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
  154. *> to converge; i off-diagonal elements of an intermediate
  155. *> tridiagonal form did not converge to zero;
  156. *> if INFO = i and JOBZ = 'V', then the algorithm failed
  157. *> to compute an eigenvalue while working on the submatrix
  158. *> lying in rows and columns INFO/(N+1) through
  159. *> mod(INFO,N+1).
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Univ. of Tennessee
  166. *> \author Univ. of California Berkeley
  167. *> \author Univ. of Colorado Denver
  168. *> \author NAG Ltd.
  169. *
  170. *> \ingroup realSYeigen
  171. *
  172. *> \par Contributors:
  173. * ==================
  174. *>
  175. *> Jeff Rutter, Computer Science Division, University of California
  176. *> at Berkeley, USA \n
  177. *> Modified by Francoise Tisseur, University of Tennessee \n
  178. *> Modified description of INFO. Sven, 16 Feb 05. \n
  179. *>
  180. * =====================================================================
  181. SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
  182. $ LIWORK, INFO )
  183. *
  184. * -- LAPACK driver routine --
  185. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  186. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187. *
  188. * .. Scalar Arguments ..
  189. CHARACTER JOBZ, UPLO
  190. INTEGER INFO, LDA, LIWORK, LWORK, N
  191. * ..
  192. * .. Array Arguments ..
  193. INTEGER IWORK( * )
  194. REAL A( LDA, * ), W( * ), WORK( * )
  195. * ..
  196. *
  197. * =====================================================================
  198. *
  199. * .. Parameters ..
  200. REAL ZERO, ONE
  201. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  202. * ..
  203. * .. Local Scalars ..
  204. *
  205. LOGICAL LOWER, LQUERY, WANTZ
  206. INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
  207. $ LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
  208. REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  209. $ SMLNUM
  210. * ..
  211. * .. External Functions ..
  212. LOGICAL LSAME
  213. INTEGER ILAENV
  214. REAL SLAMCH, SLANSY
  215. EXTERNAL ILAENV, LSAME, SLAMCH, SLANSY
  216. * ..
  217. * .. External Subroutines ..
  218. EXTERNAL SLACPY, SLASCL, SORMTR, SSCAL, SSTEDC, SSTERF,
  219. $ SSYTRD, XERBLA
  220. * ..
  221. * .. Intrinsic Functions ..
  222. INTRINSIC MAX, SQRT
  223. * ..
  224. * .. Executable Statements ..
  225. *
  226. * Test the input parameters.
  227. *
  228. WANTZ = LSAME( JOBZ, 'V' )
  229. LOWER = LSAME( UPLO, 'L' )
  230. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  231. *
  232. INFO = 0
  233. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  234. INFO = -1
  235. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  236. INFO = -2
  237. ELSE IF( N.LT.0 ) THEN
  238. INFO = -3
  239. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  240. INFO = -5
  241. END IF
  242. *
  243. IF( INFO.EQ.0 ) THEN
  244. IF( N.LE.1 ) THEN
  245. LIWMIN = 1
  246. LWMIN = 1
  247. LOPT = LWMIN
  248. LIOPT = LIWMIN
  249. ELSE
  250. IF( WANTZ ) THEN
  251. LIWMIN = 3 + 5*N
  252. LWMIN = 1 + 6*N + 2*N**2
  253. ELSE
  254. LIWMIN = 1
  255. LWMIN = 2*N + 1
  256. END IF
  257. LOPT = MAX( LWMIN, 2*N +
  258. $ N*ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
  259. LIOPT = LIWMIN
  260. END IF
  261. WORK( 1 ) = LOPT
  262. IWORK( 1 ) = LIOPT
  263. *
  264. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  265. INFO = -8
  266. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  267. INFO = -10
  268. END IF
  269. END IF
  270. *
  271. IF( INFO.NE.0 ) THEN
  272. CALL XERBLA( 'SSYEVD', -INFO )
  273. RETURN
  274. ELSE IF( LQUERY ) THEN
  275. RETURN
  276. END IF
  277. *
  278. * Quick return if possible
  279. *
  280. IF( N.EQ.0 )
  281. $ RETURN
  282. *
  283. IF( N.EQ.1 ) THEN
  284. W( 1 ) = A( 1, 1 )
  285. IF( WANTZ )
  286. $ A( 1, 1 ) = ONE
  287. RETURN
  288. END IF
  289. *
  290. * Get machine constants.
  291. *
  292. SAFMIN = SLAMCH( 'Safe minimum' )
  293. EPS = SLAMCH( 'Precision' )
  294. SMLNUM = SAFMIN / EPS
  295. BIGNUM = ONE / SMLNUM
  296. RMIN = SQRT( SMLNUM )
  297. RMAX = SQRT( BIGNUM )
  298. *
  299. * Scale matrix to allowable range, if necessary.
  300. *
  301. ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
  302. ISCALE = 0
  303. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  304. ISCALE = 1
  305. SIGMA = RMIN / ANRM
  306. ELSE IF( ANRM.GT.RMAX ) THEN
  307. ISCALE = 1
  308. SIGMA = RMAX / ANRM
  309. END IF
  310. IF( ISCALE.EQ.1 )
  311. $ CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  312. *
  313. * Call SSYTRD to reduce symmetric matrix to tridiagonal form.
  314. *
  315. INDE = 1
  316. INDTAU = INDE + N
  317. INDWRK = INDTAU + N
  318. LLWORK = LWORK - INDWRK + 1
  319. INDWK2 = INDWRK + N*N
  320. LLWRK2 = LWORK - INDWK2 + 1
  321. *
  322. CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
  323. $ WORK( INDWRK ), LLWORK, IINFO )
  324. *
  325. * For eigenvalues only, call SSTERF. For eigenvectors, first call
  326. * SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
  327. * tridiagonal matrix, then call SORMTR to multiply it by the
  328. * Householder transformations stored in A.
  329. *
  330. IF( .NOT.WANTZ ) THEN
  331. CALL SSTERF( N, W, WORK( INDE ), INFO )
  332. ELSE
  333. CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
  334. $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
  335. CALL SORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
  336. $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
  337. CALL SLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
  338. END IF
  339. *
  340. * If matrix was scaled, then rescale eigenvalues appropriately.
  341. *
  342. IF( ISCALE.EQ.1 )
  343. $ CALL SSCAL( N, ONE / SIGMA, W, 1 )
  344. *
  345. WORK( 1 ) = LOPT
  346. IWORK( 1 ) = LIOPT
  347. *
  348. RETURN
  349. *
  350. * End of SSYEVD
  351. *
  352. END