You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstevr.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. *> \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEVR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  22. * M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
  23. * LIWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE
  27. * INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER ISUPPZ( * ), IWORK( * )
  32. * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DSTEVR computes selected eigenvalues and, optionally, eigenvectors
  42. *> of a real symmetric tridiagonal matrix T. Eigenvalues and
  43. *> eigenvectors can be selected by specifying either a range of values
  44. *> or a range of indices for the desired eigenvalues.
  45. *>
  46. *> Whenever possible, DSTEVR calls DSTEMR to compute the
  47. *> eigenspectrum using Relatively Robust Representations. DSTEMR
  48. *> computes eigenvalues by the dqds algorithm, while orthogonal
  49. *> eigenvectors are computed from various "good" L D L^T representations
  50. *> (also known as Relatively Robust Representations). Gram-Schmidt
  51. *> orthogonalization is avoided as far as possible. More specifically,
  52. *> the various steps of the algorithm are as follows. For the i-th
  53. *> unreduced block of T,
  54. *> (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
  55. *> is a relatively robust representation,
  56. *> (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
  57. *> relative accuracy by the dqds algorithm,
  58. *> (c) If there is a cluster of close eigenvalues, "choose" sigma_i
  59. *> close to the cluster, and go to step (a),
  60. *> (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
  61. *> compute the corresponding eigenvector by forming a
  62. *> rank-revealing twisted factorization.
  63. *> The desired accuracy of the output can be specified by the input
  64. *> parameter ABSTOL.
  65. *>
  66. *> For more details, see "A new O(n^2) algorithm for the symmetric
  67. *> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
  68. *> Computer Science Division Technical Report No. UCB//CSD-97-971,
  69. *> UC Berkeley, May 1997.
  70. *>
  71. *>
  72. *> Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
  73. *> on machines which conform to the ieee-754 floating point standard.
  74. *> DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
  75. *> when partial spectrum requests are made.
  76. *>
  77. *> Normal execution of DSTEMR may create NaNs and infinities and
  78. *> hence may abort due to a floating point exception in environments
  79. *> which do not handle NaNs and infinities in the ieee standard default
  80. *> manner.
  81. *> \endverbatim
  82. *
  83. * Arguments:
  84. * ==========
  85. *
  86. *> \param[in] JOBZ
  87. *> \verbatim
  88. *> JOBZ is CHARACTER*1
  89. *> = 'N': Compute eigenvalues only;
  90. *> = 'V': Compute eigenvalues and eigenvectors.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] RANGE
  94. *> \verbatim
  95. *> RANGE is CHARACTER*1
  96. *> = 'A': all eigenvalues will be found.
  97. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  98. *> will be found.
  99. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  100. *> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  101. *> DSTEIN are called
  102. *> \endverbatim
  103. *>
  104. *> \param[in] N
  105. *> \verbatim
  106. *> N is INTEGER
  107. *> The order of the matrix. N >= 0.
  108. *> \endverbatim
  109. *>
  110. *> \param[in,out] D
  111. *> \verbatim
  112. *> D is DOUBLE PRECISION array, dimension (N)
  113. *> On entry, the n diagonal elements of the tridiagonal matrix
  114. *> A.
  115. *> On exit, D may be multiplied by a constant factor chosen
  116. *> to avoid over/underflow in computing the eigenvalues.
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] E
  120. *> \verbatim
  121. *> E is DOUBLE PRECISION array, dimension (max(1,N-1))
  122. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  123. *> matrix A in elements 1 to N-1 of E.
  124. *> On exit, E may be multiplied by a constant factor chosen
  125. *> to avoid over/underflow in computing the eigenvalues.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] VL
  129. *> \verbatim
  130. *> VL is DOUBLE PRECISION
  131. *> If RANGE='V', the lower bound of the interval to
  132. *> be searched for eigenvalues. VL < VU.
  133. *> Not referenced if RANGE = 'A' or 'I'.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] VU
  137. *> \verbatim
  138. *> VU is DOUBLE PRECISION
  139. *> If RANGE='V', the upper bound of the interval to
  140. *> be searched for eigenvalues. VL < VU.
  141. *> Not referenced if RANGE = 'A' or 'I'.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] IL
  145. *> \verbatim
  146. *> IL is INTEGER
  147. *> If RANGE='I', the index of the
  148. *> smallest eigenvalue to be returned.
  149. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  150. *> Not referenced if RANGE = 'A' or 'V'.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] IU
  154. *> \verbatim
  155. *> IU is INTEGER
  156. *> If RANGE='I', the index of the
  157. *> largest eigenvalue to be returned.
  158. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  159. *> Not referenced if RANGE = 'A' or 'V'.
  160. *> \endverbatim
  161. *>
  162. *> \param[in] ABSTOL
  163. *> \verbatim
  164. *> ABSTOL is DOUBLE PRECISION
  165. *> The absolute error tolerance for the eigenvalues.
  166. *> An approximate eigenvalue is accepted as converged
  167. *> when it is determined to lie in an interval [a,b]
  168. *> of width less than or equal to
  169. *>
  170. *> ABSTOL + EPS * max( |a|,|b| ) ,
  171. *>
  172. *> where EPS is the machine precision. If ABSTOL is less than
  173. *> or equal to zero, then EPS*|T| will be used in its place,
  174. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  175. *> by reducing A to tridiagonal form.
  176. *>
  177. *> See "Computing Small Singular Values of Bidiagonal Matrices
  178. *> with Guaranteed High Relative Accuracy," by Demmel and
  179. *> Kahan, LAPACK Working Note #3.
  180. *>
  181. *> If high relative accuracy is important, set ABSTOL to
  182. *> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
  183. *> eigenvalues are computed to high relative accuracy when
  184. *> possible in future releases. The current code does not
  185. *> make any guarantees about high relative accuracy, but
  186. *> future releases will. See J. Barlow and J. Demmel,
  187. *> "Computing Accurate Eigensystems of Scaled Diagonally
  188. *> Dominant Matrices", LAPACK Working Note #7, for a discussion
  189. *> of which matrices define their eigenvalues to high relative
  190. *> accuracy.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] M
  194. *> \verbatim
  195. *> M is INTEGER
  196. *> The total number of eigenvalues found. 0 <= M <= N.
  197. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] W
  201. *> \verbatim
  202. *> W is DOUBLE PRECISION array, dimension (N)
  203. *> The first M elements contain the selected eigenvalues in
  204. *> ascending order.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] Z
  208. *> \verbatim
  209. *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  210. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  211. *> contain the orthonormal eigenvectors of the matrix A
  212. *> corresponding to the selected eigenvalues, with the i-th
  213. *> column of Z holding the eigenvector associated with W(i).
  214. *> Note: the user must ensure that at least max(1,M) columns are
  215. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  216. *> is not known in advance and an upper bound must be used.
  217. *> \endverbatim
  218. *>
  219. *> \param[in] LDZ
  220. *> \verbatim
  221. *> LDZ is INTEGER
  222. *> The leading dimension of the array Z. LDZ >= 1, and if
  223. *> JOBZ = 'V', LDZ >= max(1,N).
  224. *> \endverbatim
  225. *>
  226. *> \param[out] ISUPPZ
  227. *> \verbatim
  228. *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  229. *> The support of the eigenvectors in Z, i.e., the indices
  230. *> indicating the nonzero elements in Z. The i-th eigenvector
  231. *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
  232. *> ISUPPZ( 2*i ).
  233. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  234. *> \endverbatim
  235. *>
  236. *> \param[out] WORK
  237. *> \verbatim
  238. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  239. *> On exit, if INFO = 0, WORK(1) returns the optimal (and
  240. *> minimal) LWORK.
  241. *> \endverbatim
  242. *>
  243. *> \param[in] LWORK
  244. *> \verbatim
  245. *> LWORK is INTEGER
  246. *> The dimension of the array WORK. LWORK >= max(1,20*N).
  247. *>
  248. *> If LWORK = -1, then a workspace query is assumed; the routine
  249. *> only calculates the optimal sizes of the WORK and IWORK
  250. *> arrays, returns these values as the first entries of the WORK
  251. *> and IWORK arrays, and no error message related to LWORK or
  252. *> LIWORK is issued by XERBLA.
  253. *> \endverbatim
  254. *>
  255. *> \param[out] IWORK
  256. *> \verbatim
  257. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  258. *> On exit, if INFO = 0, IWORK(1) returns the optimal (and
  259. *> minimal) LIWORK.
  260. *> \endverbatim
  261. *>
  262. *> \param[in] LIWORK
  263. *> \verbatim
  264. *> LIWORK is INTEGER
  265. *> The dimension of the array IWORK. LIWORK >= max(1,10*N).
  266. *>
  267. *> If LIWORK = -1, then a workspace query is assumed; the
  268. *> routine only calculates the optimal sizes of the WORK and
  269. *> IWORK arrays, returns these values as the first entries of
  270. *> the WORK and IWORK arrays, and no error message related to
  271. *> LWORK or LIWORK is issued by XERBLA.
  272. *> \endverbatim
  273. *>
  274. *> \param[out] INFO
  275. *> \verbatim
  276. *> INFO is INTEGER
  277. *> = 0: successful exit
  278. *> < 0: if INFO = -i, the i-th argument had an illegal value
  279. *> > 0: Internal error
  280. *> \endverbatim
  281. *
  282. * Authors:
  283. * ========
  284. *
  285. *> \author Univ. of Tennessee
  286. *> \author Univ. of California Berkeley
  287. *> \author Univ. of Colorado Denver
  288. *> \author NAG Ltd.
  289. *
  290. *> \ingroup doubleOTHEReigen
  291. *
  292. *> \par Contributors:
  293. * ==================
  294. *>
  295. *> Inderjit Dhillon, IBM Almaden, USA \n
  296. *> Osni Marques, LBNL/NERSC, USA \n
  297. *> Ken Stanley, Computer Science Division, University of
  298. *> California at Berkeley, USA \n
  299. *>
  300. * =====================================================================
  301. SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  302. $ M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
  303. $ LIWORK, INFO )
  304. *
  305. * -- LAPACK driver routine --
  306. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  307. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  308. *
  309. * .. Scalar Arguments ..
  310. CHARACTER JOBZ, RANGE
  311. INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
  312. DOUBLE PRECISION ABSTOL, VL, VU
  313. * ..
  314. * .. Array Arguments ..
  315. INTEGER ISUPPZ( * ), IWORK( * )
  316. DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  317. * ..
  318. *
  319. * =====================================================================
  320. *
  321. * .. Parameters ..
  322. DOUBLE PRECISION ZERO, ONE, TWO
  323. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  324. * ..
  325. * .. Local Scalars ..
  326. LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
  327. $ TRYRAC
  328. CHARACTER ORDER
  329. INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
  330. $ INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
  331. $ NSPLIT
  332. DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
  333. $ TMP1, TNRM, VLL, VUU
  334. * ..
  335. * .. External Functions ..
  336. LOGICAL LSAME
  337. INTEGER ILAENV
  338. DOUBLE PRECISION DLAMCH, DLANST
  339. EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
  340. * ..
  341. * .. External Subroutines ..
  342. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
  343. $ DSWAP, XERBLA
  344. * ..
  345. * .. Intrinsic Functions ..
  346. INTRINSIC MAX, MIN, SQRT
  347. * ..
  348. * .. Executable Statements ..
  349. *
  350. *
  351. * Test the input parameters.
  352. *
  353. IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
  354. *
  355. WANTZ = LSAME( JOBZ, 'V' )
  356. ALLEIG = LSAME( RANGE, 'A' )
  357. VALEIG = LSAME( RANGE, 'V' )
  358. INDEIG = LSAME( RANGE, 'I' )
  359. *
  360. LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  361. LWMIN = MAX( 1, 20*N )
  362. LIWMIN = MAX( 1, 10*N )
  363. *
  364. *
  365. INFO = 0
  366. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  367. INFO = -1
  368. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  369. INFO = -2
  370. ELSE IF( N.LT.0 ) THEN
  371. INFO = -3
  372. ELSE
  373. IF( VALEIG ) THEN
  374. IF( N.GT.0 .AND. VU.LE.VL )
  375. $ INFO = -7
  376. ELSE IF( INDEIG ) THEN
  377. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  378. INFO = -8
  379. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  380. INFO = -9
  381. END IF
  382. END IF
  383. END IF
  384. IF( INFO.EQ.0 ) THEN
  385. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  386. INFO = -14
  387. END IF
  388. END IF
  389. *
  390. IF( INFO.EQ.0 ) THEN
  391. WORK( 1 ) = LWMIN
  392. IWORK( 1 ) = LIWMIN
  393. *
  394. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  395. INFO = -17
  396. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  397. INFO = -19
  398. END IF
  399. END IF
  400. *
  401. IF( INFO.NE.0 ) THEN
  402. CALL XERBLA( 'DSTEVR', -INFO )
  403. RETURN
  404. ELSE IF( LQUERY ) THEN
  405. RETURN
  406. END IF
  407. *
  408. * Quick return if possible
  409. *
  410. M = 0
  411. IF( N.EQ.0 )
  412. $ RETURN
  413. *
  414. IF( N.EQ.1 ) THEN
  415. IF( ALLEIG .OR. INDEIG ) THEN
  416. M = 1
  417. W( 1 ) = D( 1 )
  418. ELSE
  419. IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
  420. M = 1
  421. W( 1 ) = D( 1 )
  422. END IF
  423. END IF
  424. IF( WANTZ )
  425. $ Z( 1, 1 ) = ONE
  426. RETURN
  427. END IF
  428. *
  429. * Get machine constants.
  430. *
  431. SAFMIN = DLAMCH( 'Safe minimum' )
  432. EPS = DLAMCH( 'Precision' )
  433. SMLNUM = SAFMIN / EPS
  434. BIGNUM = ONE / SMLNUM
  435. RMIN = SQRT( SMLNUM )
  436. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  437. *
  438. *
  439. * Scale matrix to allowable range, if necessary.
  440. *
  441. ISCALE = 0
  442. IF( VALEIG ) THEN
  443. VLL = VL
  444. VUU = VU
  445. END IF
  446. *
  447. TNRM = DLANST( 'M', N, D, E )
  448. IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  449. ISCALE = 1
  450. SIGMA = RMIN / TNRM
  451. ELSE IF( TNRM.GT.RMAX ) THEN
  452. ISCALE = 1
  453. SIGMA = RMAX / TNRM
  454. END IF
  455. IF( ISCALE.EQ.1 ) THEN
  456. CALL DSCAL( N, SIGMA, D, 1 )
  457. CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
  458. IF( VALEIG ) THEN
  459. VLL = VL*SIGMA
  460. VUU = VU*SIGMA
  461. END IF
  462. END IF
  463. * Initialize indices into workspaces. Note: These indices are used only
  464. * if DSTERF or DSTEMR fail.
  465. * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  466. * stores the block indices of each of the M<=N eigenvalues.
  467. INDIBL = 1
  468. * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  469. * stores the starting and finishing indices of each block.
  470. INDISP = INDIBL + N
  471. * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  472. * that corresponding to eigenvectors that fail to converge in
  473. * DSTEIN. This information is discarded; if any fail, the driver
  474. * returns INFO > 0.
  475. INDIFL = INDISP + N
  476. * INDIWO is the offset of the remaining integer workspace.
  477. INDIWO = INDISP + N
  478. *
  479. * If all eigenvalues are desired, then
  480. * call DSTERF or DSTEMR. If this fails for some eigenvalue, then
  481. * try DSTEBZ.
  482. *
  483. *
  484. TEST = .FALSE.
  485. IF( INDEIG ) THEN
  486. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  487. TEST = .TRUE.
  488. END IF
  489. END IF
  490. IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
  491. CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
  492. IF( .NOT.WANTZ ) THEN
  493. CALL DCOPY( N, D, 1, W, 1 )
  494. CALL DSTERF( N, W, WORK, INFO )
  495. ELSE
  496. CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
  497. IF (ABSTOL .LE. TWO*N*EPS) THEN
  498. TRYRAC = .TRUE.
  499. ELSE
  500. TRYRAC = .FALSE.
  501. END IF
  502. CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
  503. $ IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
  504. $ WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
  505. *
  506. END IF
  507. IF( INFO.EQ.0 ) THEN
  508. M = N
  509. GO TO 10
  510. END IF
  511. INFO = 0
  512. END IF
  513. *
  514. * Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  515. *
  516. IF( WANTZ ) THEN
  517. ORDER = 'B'
  518. ELSE
  519. ORDER = 'E'
  520. END IF
  521. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
  522. $ NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
  523. $ IWORK( INDIWO ), INFO )
  524. *
  525. IF( WANTZ ) THEN
  526. CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
  527. $ Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
  528. $ INFO )
  529. END IF
  530. *
  531. * If matrix was scaled, then rescale eigenvalues appropriately.
  532. *
  533. 10 CONTINUE
  534. IF( ISCALE.EQ.1 ) THEN
  535. IF( INFO.EQ.0 ) THEN
  536. IMAX = M
  537. ELSE
  538. IMAX = INFO - 1
  539. END IF
  540. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  541. END IF
  542. *
  543. * If eigenvalues are not in order, then sort them, along with
  544. * eigenvectors.
  545. *
  546. IF( WANTZ ) THEN
  547. DO 30 J = 1, M - 1
  548. I = 0
  549. TMP1 = W( J )
  550. DO 20 JJ = J + 1, M
  551. IF( W( JJ ).LT.TMP1 ) THEN
  552. I = JJ
  553. TMP1 = W( JJ )
  554. END IF
  555. 20 CONTINUE
  556. *
  557. IF( I.NE.0 ) THEN
  558. ITMP1 = IWORK( I )
  559. W( I ) = W( J )
  560. IWORK( I ) = IWORK( J )
  561. W( J ) = TMP1
  562. IWORK( J ) = ITMP1
  563. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  564. END IF
  565. 30 CONTINUE
  566. END IF
  567. *
  568. * Causes problems with tests 19 & 20:
  569. * IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
  570. *
  571. *
  572. WORK( 1 ) = LWMIN
  573. IWORK( 1 ) = LIWMIN
  574. RETURN
  575. *
  576. * End of DSTEVR
  577. *
  578. END