You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstevd.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. *> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  22. * LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ
  26. * INTEGER INFO, LDZ, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
  40. *> real symmetric tridiagonal matrix. If eigenvectors are desired, it
  41. *> uses a divide and conquer algorithm.
  42. *>
  43. *> The divide and conquer algorithm makes very mild assumptions about
  44. *> floating point arithmetic. It will work on machines with a guard
  45. *> digit in add/subtract, or on those binary machines without guard
  46. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  47. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  48. *> without guard digits, but we know of none.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] JOBZ
  55. *> \verbatim
  56. *> JOBZ is CHARACTER*1
  57. *> = 'N': Compute eigenvalues only;
  58. *> = 'V': Compute eigenvalues and eigenvectors.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] D
  68. *> \verbatim
  69. *> D is DOUBLE PRECISION array, dimension (N)
  70. *> On entry, the n diagonal elements of the tridiagonal matrix
  71. *> A.
  72. *> On exit, if INFO = 0, the eigenvalues in ascending order.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] E
  76. *> \verbatim
  77. *> E is DOUBLE PRECISION array, dimension (N-1)
  78. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  79. *> matrix A, stored in elements 1 to N-1 of E.
  80. *> On exit, the contents of E are destroyed.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] Z
  84. *> \verbatim
  85. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  86. *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
  87. *> eigenvectors of the matrix A, with the i-th column of Z
  88. *> holding the eigenvector associated with D(i).
  89. *> If JOBZ = 'N', then Z is not referenced.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDZ
  93. *> \verbatim
  94. *> LDZ is INTEGER
  95. *> The leading dimension of the array Z. LDZ >= 1, and if
  96. *> JOBZ = 'V', LDZ >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] WORK
  100. *> \verbatim
  101. *> WORK is DOUBLE PRECISION array,
  102. *> dimension (LWORK)
  103. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LWORK
  107. *> \verbatim
  108. *> LWORK is INTEGER
  109. *> The dimension of the array WORK.
  110. *> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
  111. *> If JOBZ = 'V' and N > 1 then LWORK must be at least
  112. *> ( 1 + 4*N + N**2 ).
  113. *>
  114. *> If LWORK = -1, then a workspace query is assumed; the routine
  115. *> only calculates the optimal sizes of the WORK and IWORK
  116. *> arrays, returns these values as the first entries of the WORK
  117. *> and IWORK arrays, and no error message related to LWORK or
  118. *> LIWORK is issued by XERBLA.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] IWORK
  122. *> \verbatim
  123. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  124. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LIWORK
  128. *> \verbatim
  129. *> LIWORK is INTEGER
  130. *> The dimension of the array IWORK.
  131. *> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
  132. *> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
  133. *>
  134. *> If LIWORK = -1, then a workspace query is assumed; the
  135. *> routine only calculates the optimal sizes of the WORK and
  136. *> IWORK arrays, returns these values as the first entries of
  137. *> the WORK and IWORK arrays, and no error message related to
  138. *> LWORK or LIWORK is issued by XERBLA.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] INFO
  142. *> \verbatim
  143. *> INFO is INTEGER
  144. *> = 0: successful exit
  145. *> < 0: if INFO = -i, the i-th argument had an illegal value
  146. *> > 0: if INFO = i, the algorithm failed to converge; i
  147. *> off-diagonal elements of E did not converge to zero.
  148. *> \endverbatim
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \ingroup doubleOTHEReigen
  159. *
  160. * =====================================================================
  161. SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  162. $ LIWORK, INFO )
  163. *
  164. * -- LAPACK driver routine --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. *
  168. * .. Scalar Arguments ..
  169. CHARACTER JOBZ
  170. INTEGER INFO, LDZ, LIWORK, LWORK, N
  171. * ..
  172. * .. Array Arguments ..
  173. INTEGER IWORK( * )
  174. DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  175. * ..
  176. *
  177. * =====================================================================
  178. *
  179. * .. Parameters ..
  180. DOUBLE PRECISION ZERO, ONE
  181. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  182. * ..
  183. * .. Local Scalars ..
  184. LOGICAL LQUERY, WANTZ
  185. INTEGER ISCALE, LIWMIN, LWMIN
  186. DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
  187. $ TNRM
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. DOUBLE PRECISION DLAMCH, DLANST
  192. EXTERNAL LSAME, DLAMCH, DLANST
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL DSCAL, DSTEDC, DSTERF, XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC SQRT
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. * Test the input parameters.
  203. *
  204. WANTZ = LSAME( JOBZ, 'V' )
  205. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  206. *
  207. INFO = 0
  208. LIWMIN = 1
  209. LWMIN = 1
  210. IF( N.GT.1 .AND. WANTZ ) THEN
  211. LWMIN = 1 + 4*N + N**2
  212. LIWMIN = 3 + 5*N
  213. END IF
  214. *
  215. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  216. INFO = -1
  217. ELSE IF( N.LT.0 ) THEN
  218. INFO = -2
  219. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  220. INFO = -6
  221. END IF
  222. *
  223. IF( INFO.EQ.0 ) THEN
  224. WORK( 1 ) = LWMIN
  225. IWORK( 1 ) = LIWMIN
  226. *
  227. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  228. INFO = -8
  229. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  230. INFO = -10
  231. END IF
  232. END IF
  233. *
  234. IF( INFO.NE.0 ) THEN
  235. CALL XERBLA( 'DSTEVD', -INFO )
  236. RETURN
  237. ELSE IF( LQUERY ) THEN
  238. RETURN
  239. END IF
  240. *
  241. * Quick return if possible
  242. *
  243. IF( N.EQ.0 )
  244. $ RETURN
  245. *
  246. IF( N.EQ.1 ) THEN
  247. IF( WANTZ )
  248. $ Z( 1, 1 ) = ONE
  249. RETURN
  250. END IF
  251. *
  252. * Get machine constants.
  253. *
  254. SAFMIN = DLAMCH( 'Safe minimum' )
  255. EPS = DLAMCH( 'Precision' )
  256. SMLNUM = SAFMIN / EPS
  257. BIGNUM = ONE / SMLNUM
  258. RMIN = SQRT( SMLNUM )
  259. RMAX = SQRT( BIGNUM )
  260. *
  261. * Scale matrix to allowable range, if necessary.
  262. *
  263. ISCALE = 0
  264. TNRM = DLANST( 'M', N, D, E )
  265. IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  266. ISCALE = 1
  267. SIGMA = RMIN / TNRM
  268. ELSE IF( TNRM.GT.RMAX ) THEN
  269. ISCALE = 1
  270. SIGMA = RMAX / TNRM
  271. END IF
  272. IF( ISCALE.EQ.1 ) THEN
  273. CALL DSCAL( N, SIGMA, D, 1 )
  274. CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
  275. END IF
  276. *
  277. * For eigenvalues only, call DSTERF. For eigenvalues and
  278. * eigenvectors, call DSTEDC.
  279. *
  280. IF( .NOT.WANTZ ) THEN
  281. CALL DSTERF( N, D, E, INFO )
  282. ELSE
  283. CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
  284. $ INFO )
  285. END IF
  286. *
  287. * If matrix was scaled, then rescale eigenvalues appropriately.
  288. *
  289. IF( ISCALE.EQ.1 )
  290. $ CALL DSCAL( N, ONE / SIGMA, D, 1 )
  291. *
  292. WORK( 1 ) = LWMIN
  293. IWORK( 1 ) = LIWMIN
  294. *
  295. RETURN
  296. *
  297. * End of DSTEVD
  298. *
  299. END