You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dptrfs.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. *> \brief \b DPTRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPTRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
  22. * BERR, WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDB, LDX, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
  29. * $ E( * ), EF( * ), FERR( * ), WORK( * ),
  30. * $ X( LDX, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DPTRFS improves the computed solution to a system of linear
  40. *> equations when the coefficient matrix is symmetric positive definite
  41. *> and tridiagonal, and provides error bounds and backward error
  42. *> estimates for the solution.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] N
  49. *> \verbatim
  50. *> N is INTEGER
  51. *> The order of the matrix A. N >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] NRHS
  55. *> \verbatim
  56. *> NRHS is INTEGER
  57. *> The number of right hand sides, i.e., the number of columns
  58. *> of the matrix B. NRHS >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] D
  62. *> \verbatim
  63. *> D is DOUBLE PRECISION array, dimension (N)
  64. *> The n diagonal elements of the tridiagonal matrix A.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] E
  68. *> \verbatim
  69. *> E is DOUBLE PRECISION array, dimension (N-1)
  70. *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DF
  74. *> \verbatim
  75. *> DF is DOUBLE PRECISION array, dimension (N)
  76. *> The n diagonal elements of the diagonal matrix D from the
  77. *> factorization computed by DPTTRF.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] EF
  81. *> \verbatim
  82. *> EF is DOUBLE PRECISION array, dimension (N-1)
  83. *> The (n-1) subdiagonal elements of the unit bidiagonal factor
  84. *> L from the factorization computed by DPTTRF.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] B
  88. *> \verbatim
  89. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  90. *> The right hand side matrix B.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDB
  94. *> \verbatim
  95. *> LDB is INTEGER
  96. *> The leading dimension of the array B. LDB >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] X
  100. *> \verbatim
  101. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  102. *> On entry, the solution matrix X, as computed by DPTTRS.
  103. *> On exit, the improved solution matrix X.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDX
  107. *> \verbatim
  108. *> LDX is INTEGER
  109. *> The leading dimension of the array X. LDX >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] FERR
  113. *> \verbatim
  114. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  115. *> The forward error bound for each solution vector
  116. *> X(j) (the j-th column of the solution matrix X).
  117. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  118. *> is an estimated upper bound for the magnitude of the largest
  119. *> element in (X(j) - XTRUE) divided by the magnitude of the
  120. *> largest element in X(j).
  121. *> \endverbatim
  122. *>
  123. *> \param[out] BERR
  124. *> \verbatim
  125. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  126. *> The componentwise relative backward error of each solution
  127. *> vector X(j) (i.e., the smallest relative change in
  128. *> any element of A or B that makes X(j) an exact solution).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] WORK
  132. *> \verbatim
  133. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  134. *> \endverbatim
  135. *>
  136. *> \param[out] INFO
  137. *> \verbatim
  138. *> INFO is INTEGER
  139. *> = 0: successful exit
  140. *> < 0: if INFO = -i, the i-th argument had an illegal value
  141. *> \endverbatim
  142. *
  143. *> \par Internal Parameters:
  144. * =========================
  145. *>
  146. *> \verbatim
  147. *> ITMAX is the maximum number of steps of iterative refinement.
  148. *> \endverbatim
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \ingroup doublePTcomputational
  159. *
  160. * =====================================================================
  161. SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
  162. $ BERR, WORK, INFO )
  163. *
  164. * -- LAPACK computational routine --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. *
  168. * .. Scalar Arguments ..
  169. INTEGER INFO, LDB, LDX, N, NRHS
  170. * ..
  171. * .. Array Arguments ..
  172. DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
  173. $ E( * ), EF( * ), FERR( * ), WORK( * ),
  174. $ X( LDX, * )
  175. * ..
  176. *
  177. * =====================================================================
  178. *
  179. * .. Parameters ..
  180. INTEGER ITMAX
  181. PARAMETER ( ITMAX = 5 )
  182. DOUBLE PRECISION ZERO
  183. PARAMETER ( ZERO = 0.0D+0 )
  184. DOUBLE PRECISION ONE
  185. PARAMETER ( ONE = 1.0D+0 )
  186. DOUBLE PRECISION TWO
  187. PARAMETER ( TWO = 2.0D+0 )
  188. DOUBLE PRECISION THREE
  189. PARAMETER ( THREE = 3.0D+0 )
  190. * ..
  191. * .. Local Scalars ..
  192. INTEGER COUNT, I, IX, J, NZ
  193. DOUBLE PRECISION BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2,
  194. $ SAFMIN
  195. * ..
  196. * .. External Subroutines ..
  197. EXTERNAL DAXPY, DPTTRS, XERBLA
  198. * ..
  199. * .. Intrinsic Functions ..
  200. INTRINSIC ABS, MAX
  201. * ..
  202. * .. External Functions ..
  203. INTEGER IDAMAX
  204. DOUBLE PRECISION DLAMCH
  205. EXTERNAL IDAMAX, DLAMCH
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Test the input parameters.
  210. *
  211. INFO = 0
  212. IF( N.LT.0 ) THEN
  213. INFO = -1
  214. ELSE IF( NRHS.LT.0 ) THEN
  215. INFO = -2
  216. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  217. INFO = -8
  218. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  219. INFO = -10
  220. END IF
  221. IF( INFO.NE.0 ) THEN
  222. CALL XERBLA( 'DPTRFS', -INFO )
  223. RETURN
  224. END IF
  225. *
  226. * Quick return if possible
  227. *
  228. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  229. DO 10 J = 1, NRHS
  230. FERR( J ) = ZERO
  231. BERR( J ) = ZERO
  232. 10 CONTINUE
  233. RETURN
  234. END IF
  235. *
  236. * NZ = maximum number of nonzero elements in each row of A, plus 1
  237. *
  238. NZ = 4
  239. EPS = DLAMCH( 'Epsilon' )
  240. SAFMIN = DLAMCH( 'Safe minimum' )
  241. SAFE1 = NZ*SAFMIN
  242. SAFE2 = SAFE1 / EPS
  243. *
  244. * Do for each right hand side
  245. *
  246. DO 90 J = 1, NRHS
  247. *
  248. COUNT = 1
  249. LSTRES = THREE
  250. 20 CONTINUE
  251. *
  252. * Loop until stopping criterion is satisfied.
  253. *
  254. * Compute residual R = B - A * X. Also compute
  255. * abs(A)*abs(x) + abs(b) for use in the backward error bound.
  256. *
  257. IF( N.EQ.1 ) THEN
  258. BI = B( 1, J )
  259. DX = D( 1 )*X( 1, J )
  260. WORK( N+1 ) = BI - DX
  261. WORK( 1 ) = ABS( BI ) + ABS( DX )
  262. ELSE
  263. BI = B( 1, J )
  264. DX = D( 1 )*X( 1, J )
  265. EX = E( 1 )*X( 2, J )
  266. WORK( N+1 ) = BI - DX - EX
  267. WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX )
  268. DO 30 I = 2, N - 1
  269. BI = B( I, J )
  270. CX = E( I-1 )*X( I-1, J )
  271. DX = D( I )*X( I, J )
  272. EX = E( I )*X( I+1, J )
  273. WORK( N+I ) = BI - CX - DX - EX
  274. WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX )
  275. 30 CONTINUE
  276. BI = B( N, J )
  277. CX = E( N-1 )*X( N-1, J )
  278. DX = D( N )*X( N, J )
  279. WORK( N+N ) = BI - CX - DX
  280. WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX )
  281. END IF
  282. *
  283. * Compute componentwise relative backward error from formula
  284. *
  285. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  286. *
  287. * where abs(Z) is the componentwise absolute value of the matrix
  288. * or vector Z. If the i-th component of the denominator is less
  289. * than SAFE2, then SAFE1 is added to the i-th components of the
  290. * numerator and denominator before dividing.
  291. *
  292. S = ZERO
  293. DO 40 I = 1, N
  294. IF( WORK( I ).GT.SAFE2 ) THEN
  295. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  296. ELSE
  297. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  298. $ ( WORK( I )+SAFE1 ) )
  299. END IF
  300. 40 CONTINUE
  301. BERR( J ) = S
  302. *
  303. * Test stopping criterion. Continue iterating if
  304. * 1) The residual BERR(J) is larger than machine epsilon, and
  305. * 2) BERR(J) decreased by at least a factor of 2 during the
  306. * last iteration, and
  307. * 3) At most ITMAX iterations tried.
  308. *
  309. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  310. $ COUNT.LE.ITMAX ) THEN
  311. *
  312. * Update solution and try again.
  313. *
  314. CALL DPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO )
  315. CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  316. LSTRES = BERR( J )
  317. COUNT = COUNT + 1
  318. GO TO 20
  319. END IF
  320. *
  321. * Bound error from formula
  322. *
  323. * norm(X - XTRUE) / norm(X) .le. FERR =
  324. * norm( abs(inv(A))*
  325. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  326. *
  327. * where
  328. * norm(Z) is the magnitude of the largest component of Z
  329. * inv(A) is the inverse of A
  330. * abs(Z) is the componentwise absolute value of the matrix or
  331. * vector Z
  332. * NZ is the maximum number of nonzeros in any row of A, plus 1
  333. * EPS is machine epsilon
  334. *
  335. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  336. * is incremented by SAFE1 if the i-th component of
  337. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  338. *
  339. DO 50 I = 1, N
  340. IF( WORK( I ).GT.SAFE2 ) THEN
  341. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  342. ELSE
  343. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  344. END IF
  345. 50 CONTINUE
  346. IX = IDAMAX( N, WORK, 1 )
  347. FERR( J ) = WORK( IX )
  348. *
  349. * Estimate the norm of inv(A).
  350. *
  351. * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
  352. *
  353. * m(i,j) = abs(A(i,j)), i = j,
  354. * m(i,j) = -abs(A(i,j)), i .ne. j,
  355. *
  356. * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T.
  357. *
  358. * Solve M(L) * x = e.
  359. *
  360. WORK( 1 ) = ONE
  361. DO 60 I = 2, N
  362. WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) )
  363. 60 CONTINUE
  364. *
  365. * Solve D * M(L)**T * x = b.
  366. *
  367. WORK( N ) = WORK( N ) / DF( N )
  368. DO 70 I = N - 1, 1, -1
  369. WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) )
  370. 70 CONTINUE
  371. *
  372. * Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
  373. *
  374. IX = IDAMAX( N, WORK, 1 )
  375. FERR( J ) = FERR( J )*ABS( WORK( IX ) )
  376. *
  377. * Normalize error.
  378. *
  379. LSTRES = ZERO
  380. DO 80 I = 1, N
  381. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  382. 80 CONTINUE
  383. IF( LSTRES.NE.ZERO )
  384. $ FERR( J ) = FERR( J ) / LSTRES
  385. *
  386. 90 CONTINUE
  387. *
  388. RETURN
  389. *
  390. * End of DPTRFS
  391. *
  392. END