You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgghd3.f 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. *> \brief \b DGGHD3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGHD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgghd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgghd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgghd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  22. * LDQ, Z, LDZ, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, COMPZ
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DGGHD3 reduces a pair of real matrices (A,B) to generalized upper
  40. *> Hessenberg form using orthogonal transformations, where A is a
  41. *> general matrix and B is upper triangular. The form of the
  42. *> generalized eigenvalue problem is
  43. *> A*x = lambda*B*x,
  44. *> and B is typically made upper triangular by computing its QR
  45. *> factorization and moving the orthogonal matrix Q to the left side
  46. *> of the equation.
  47. *>
  48. *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
  49. *> Q**T*A*Z = H
  50. *> and transforms B to another upper triangular matrix T:
  51. *> Q**T*B*Z = T
  52. *> in order to reduce the problem to its standard form
  53. *> H*y = lambda*T*y
  54. *> where y = Z**T*x.
  55. *>
  56. *> The orthogonal matrices Q and Z are determined as products of Givens
  57. *> rotations. They may either be formed explicitly, or they may be
  58. *> postmultiplied into input matrices Q1 and Z1, so that
  59. *>
  60. *> Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
  61. *>
  62. *> Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
  63. *>
  64. *> If Q1 is the orthogonal matrix from the QR factorization of B in the
  65. *> original equation A*x = lambda*B*x, then DGGHD3 reduces the original
  66. *> problem to generalized Hessenberg form.
  67. *>
  68. *> This is a blocked variant of DGGHRD, using matrix-matrix
  69. *> multiplications for parts of the computation to enhance performance.
  70. *> \endverbatim
  71. *
  72. * Arguments:
  73. * ==========
  74. *
  75. *> \param[in] COMPQ
  76. *> \verbatim
  77. *> COMPQ is CHARACTER*1
  78. *> = 'N': do not compute Q;
  79. *> = 'I': Q is initialized to the unit matrix, and the
  80. *> orthogonal matrix Q is returned;
  81. *> = 'V': Q must contain an orthogonal matrix Q1 on entry,
  82. *> and the product Q1*Q is returned.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] COMPZ
  86. *> \verbatim
  87. *> COMPZ is CHARACTER*1
  88. *> = 'N': do not compute Z;
  89. *> = 'I': Z is initialized to the unit matrix, and the
  90. *> orthogonal matrix Z is returned;
  91. *> = 'V': Z must contain an orthogonal matrix Z1 on entry,
  92. *> and the product Z1*Z is returned.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] N
  96. *> \verbatim
  97. *> N is INTEGER
  98. *> The order of the matrices A and B. N >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] ILO
  102. *> \verbatim
  103. *> ILO is INTEGER
  104. *> \endverbatim
  105. *>
  106. *> \param[in] IHI
  107. *> \verbatim
  108. *> IHI is INTEGER
  109. *>
  110. *> ILO and IHI mark the rows and columns of A which are to be
  111. *> reduced. It is assumed that A is already upper triangular
  112. *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
  113. *> normally set by a previous call to DGGBAL; otherwise they
  114. *> should be set to 1 and N respectively.
  115. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] A
  119. *> \verbatim
  120. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  121. *> On entry, the N-by-N general matrix to be reduced.
  122. *> On exit, the upper triangle and the first subdiagonal of A
  123. *> are overwritten with the upper Hessenberg matrix H, and the
  124. *> rest is set to zero.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDA
  128. *> \verbatim
  129. *> LDA is INTEGER
  130. *> The leading dimension of the array A. LDA >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] B
  134. *> \verbatim
  135. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  136. *> On entry, the N-by-N upper triangular matrix B.
  137. *> On exit, the upper triangular matrix T = Q**T B Z. The
  138. *> elements below the diagonal are set to zero.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDB
  142. *> \verbatim
  143. *> LDB is INTEGER
  144. *> The leading dimension of the array B. LDB >= max(1,N).
  145. *> \endverbatim
  146. *>
  147. *> \param[in,out] Q
  148. *> \verbatim
  149. *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
  150. *> On entry, if COMPQ = 'V', the orthogonal matrix Q1,
  151. *> typically from the QR factorization of B.
  152. *> On exit, if COMPQ='I', the orthogonal matrix Q, and if
  153. *> COMPQ = 'V', the product Q1*Q.
  154. *> Not referenced if COMPQ='N'.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDQ
  158. *> \verbatim
  159. *> LDQ is INTEGER
  160. *> The leading dimension of the array Q.
  161. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  162. *> \endverbatim
  163. *>
  164. *> \param[in,out] Z
  165. *> \verbatim
  166. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  167. *> On entry, if COMPZ = 'V', the orthogonal matrix Z1.
  168. *> On exit, if COMPZ='I', the orthogonal matrix Z, and if
  169. *> COMPZ = 'V', the product Z1*Z.
  170. *> Not referenced if COMPZ='N'.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDZ
  174. *> \verbatim
  175. *> LDZ is INTEGER
  176. *> The leading dimension of the array Z.
  177. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  178. *> \endverbatim
  179. *>
  180. *> \param[out] WORK
  181. *> \verbatim
  182. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  183. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] LWORK
  187. *> \verbatim
  188. *> LWORK is INTEGER
  189. *> The length of the array WORK. LWORK >= 1.
  190. *> For optimum performance LWORK >= 6*N*NB, where NB is the
  191. *> optimal blocksize.
  192. *>
  193. *> If LWORK = -1, then a workspace query is assumed; the routine
  194. *> only calculates the optimal size of the WORK array, returns
  195. *> this value as the first entry of the WORK array, and no error
  196. *> message related to LWORK is issued by XERBLA.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] INFO
  200. *> \verbatim
  201. *> INFO is INTEGER
  202. *> = 0: successful exit.
  203. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  204. *> \endverbatim
  205. *
  206. * Authors:
  207. * ========
  208. *
  209. *> \author Univ. of Tennessee
  210. *> \author Univ. of California Berkeley
  211. *> \author Univ. of Colorado Denver
  212. *> \author NAG Ltd.
  213. *
  214. *> \ingroup doubleOTHERcomputational
  215. *
  216. *> \par Further Details:
  217. * =====================
  218. *>
  219. *> \verbatim
  220. *>
  221. *> This routine reduces A to Hessenberg form and maintains B in triangular form
  222. *> using a blocked variant of Moler and Stewart's original algorithm,
  223. *> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
  224. *> (BIT 2008).
  225. *> \endverbatim
  226. *>
  227. * =====================================================================
  228. SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  229. $ LDQ, Z, LDZ, WORK, LWORK, INFO )
  230. *
  231. * -- LAPACK computational routine --
  232. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  233. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  234. *
  235. IMPLICIT NONE
  236. *
  237. * .. Scalar Arguments ..
  238. CHARACTER COMPQ, COMPZ
  239. INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  240. * ..
  241. * .. Array Arguments ..
  242. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  243. $ Z( LDZ, * ), WORK( * )
  244. * ..
  245. *
  246. * =====================================================================
  247. *
  248. * .. Parameters ..
  249. DOUBLE PRECISION ZERO, ONE
  250. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  251. * ..
  252. * .. Local Scalars ..
  253. LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
  254. CHARACTER*1 COMPQ2, COMPZ2
  255. INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
  256. $ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
  257. $ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
  258. DOUBLE PRECISION C, C1, C2, S, S1, S2, TEMP, TEMP1, TEMP2, TEMP3
  259. * ..
  260. * .. External Functions ..
  261. LOGICAL LSAME
  262. INTEGER ILAENV
  263. EXTERNAL ILAENV, LSAME
  264. * ..
  265. * .. External Subroutines ..
  266. EXTERNAL DGGHRD, DLARTG, DLASET, DORM22, DROT, DGEMM,
  267. $ DGEMV, DTRMV, DLACPY, XERBLA
  268. * ..
  269. * .. Intrinsic Functions ..
  270. INTRINSIC DBLE, MAX
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. * Decode and test the input parameters.
  275. *
  276. INFO = 0
  277. NB = ILAENV( 1, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  278. LWKOPT = MAX( 6*N*NB, 1 )
  279. WORK( 1 ) = DBLE( LWKOPT )
  280. INITQ = LSAME( COMPQ, 'I' )
  281. WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
  282. INITZ = LSAME( COMPZ, 'I' )
  283. WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
  284. LQUERY = ( LWORK.EQ.-1 )
  285. *
  286. IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  287. INFO = -1
  288. ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
  289. INFO = -2
  290. ELSE IF( N.LT.0 ) THEN
  291. INFO = -3
  292. ELSE IF( ILO.LT.1 ) THEN
  293. INFO = -4
  294. ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  295. INFO = -5
  296. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  297. INFO = -7
  298. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  299. INFO = -9
  300. ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  301. INFO = -11
  302. ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  303. INFO = -13
  304. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  305. INFO = -15
  306. END IF
  307. IF( INFO.NE.0 ) THEN
  308. CALL XERBLA( 'DGGHD3', -INFO )
  309. RETURN
  310. ELSE IF( LQUERY ) THEN
  311. RETURN
  312. END IF
  313. *
  314. * Initialize Q and Z if desired.
  315. *
  316. IF( INITQ )
  317. $ CALL DLASET( 'All', N, N, ZERO, ONE, Q, LDQ )
  318. IF( INITZ )
  319. $ CALL DLASET( 'All', N, N, ZERO, ONE, Z, LDZ )
  320. *
  321. * Zero out lower triangle of B.
  322. *
  323. IF( N.GT.1 )
  324. $ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2, 1), LDB )
  325. *
  326. * Quick return if possible
  327. *
  328. NH = IHI - ILO + 1
  329. IF( NH.LE.1 ) THEN
  330. WORK( 1 ) = ONE
  331. RETURN
  332. END IF
  333. *
  334. * Determine the blocksize.
  335. *
  336. NBMIN = ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  337. IF( NB.GT.1 .AND. NB.LT.NH ) THEN
  338. *
  339. * Determine when to use unblocked instead of blocked code.
  340. *
  341. NX = MAX( NB, ILAENV( 3, 'DGGHD3', ' ', N, ILO, IHI, -1 ) )
  342. IF( NX.LT.NH ) THEN
  343. *
  344. * Determine if workspace is large enough for blocked code.
  345. *
  346. IF( LWORK.LT.LWKOPT ) THEN
  347. *
  348. * Not enough workspace to use optimal NB: determine the
  349. * minimum value of NB, and reduce NB or force use of
  350. * unblocked code.
  351. *
  352. NBMIN = MAX( 2, ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI,
  353. $ -1 ) )
  354. IF( LWORK.GE.6*N*NBMIN ) THEN
  355. NB = LWORK / ( 6*N )
  356. ELSE
  357. NB = 1
  358. END IF
  359. END IF
  360. END IF
  361. END IF
  362. *
  363. IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
  364. *
  365. * Use unblocked code below
  366. *
  367. JCOL = ILO
  368. *
  369. ELSE
  370. *
  371. * Use blocked code
  372. *
  373. KACC22 = ILAENV( 16, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  374. BLK22 = KACC22.EQ.2
  375. DO JCOL = ILO, IHI-2, NB
  376. NNB = MIN( NB, IHI-JCOL-1 )
  377. *
  378. * Initialize small orthogonal factors that will hold the
  379. * accumulated Givens rotations in workspace.
  380. * N2NB denotes the number of 2*NNB-by-2*NNB factors
  381. * NBLST denotes the (possibly smaller) order of the last
  382. * factor.
  383. *
  384. N2NB = ( IHI-JCOL-1 ) / NNB - 1
  385. NBLST = IHI - JCOL - N2NB*NNB
  386. CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK, NBLST )
  387. PW = NBLST * NBLST + 1
  388. DO I = 1, N2NB
  389. CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
  390. $ WORK( PW ), 2*NNB )
  391. PW = PW + 4*NNB*NNB
  392. END DO
  393. *
  394. * Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
  395. *
  396. DO J = JCOL, JCOL+NNB-1
  397. *
  398. * Reduce Jth column of A. Store cosines and sines in Jth
  399. * column of A and B, respectively.
  400. *
  401. DO I = IHI, J+2, -1
  402. TEMP = A( I-1, J )
  403. CALL DLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
  404. A( I, J ) = C
  405. B( I, J ) = S
  406. END DO
  407. *
  408. * Accumulate Givens rotations into workspace array.
  409. *
  410. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  411. LEN = 2 + J - JCOL
  412. JROW = J + N2NB*NNB + 2
  413. DO I = IHI, JROW, -1
  414. C = A( I, J )
  415. S = B( I, J )
  416. DO JJ = PPW, PPW+LEN-1
  417. TEMP = WORK( JJ + NBLST )
  418. WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
  419. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  420. END DO
  421. LEN = LEN + 1
  422. PPW = PPW - NBLST - 1
  423. END DO
  424. *
  425. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  426. J0 = JROW - NNB
  427. DO JROW = J0, J+2, -NNB
  428. PPW = PPWO
  429. LEN = 2 + J - JCOL
  430. DO I = JROW+NNB-1, JROW, -1
  431. C = A( I, J )
  432. S = B( I, J )
  433. DO JJ = PPW, PPW+LEN-1
  434. TEMP = WORK( JJ + 2*NNB )
  435. WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
  436. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  437. END DO
  438. LEN = LEN + 1
  439. PPW = PPW - 2*NNB - 1
  440. END DO
  441. PPWO = PPWO + 4*NNB*NNB
  442. END DO
  443. *
  444. * TOP denotes the number of top rows in A and B that will
  445. * not be updated during the next steps.
  446. *
  447. IF( JCOL.LE.2 ) THEN
  448. TOP = 0
  449. ELSE
  450. TOP = JCOL
  451. END IF
  452. *
  453. * Propagate transformations through B and replace stored
  454. * left sines/cosines by right sines/cosines.
  455. *
  456. DO JJ = N, J+1, -1
  457. *
  458. * Update JJth column of B.
  459. *
  460. DO I = MIN( JJ+1, IHI ), J+2, -1
  461. C = A( I, J )
  462. S = B( I, J )
  463. TEMP = B( I, JJ )
  464. B( I, JJ ) = C*TEMP - S*B( I-1, JJ )
  465. B( I-1, JJ ) = S*TEMP + C*B( I-1, JJ )
  466. END DO
  467. *
  468. * Annihilate B( JJ+1, JJ ).
  469. *
  470. IF( JJ.LT.IHI ) THEN
  471. TEMP = B( JJ+1, JJ+1 )
  472. CALL DLARTG( TEMP, B( JJ+1, JJ ), C, S,
  473. $ B( JJ+1, JJ+1 ) )
  474. B( JJ+1, JJ ) = ZERO
  475. CALL DROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
  476. $ B( TOP+1, JJ ), 1, C, S )
  477. A( JJ+1, J ) = C
  478. B( JJ+1, J ) = -S
  479. END IF
  480. END DO
  481. *
  482. * Update A by transformations from right.
  483. * Explicit loop unrolling provides better performance
  484. * compared to DLASR.
  485. * CALL DLASR( 'Right', 'Variable', 'Backward', IHI-TOP,
  486. * $ IHI-J, A( J+2, J ), B( J+2, J ),
  487. * $ A( TOP+1, J+1 ), LDA )
  488. *
  489. JJ = MOD( IHI-J-1, 3 )
  490. DO I = IHI-J-3, JJ+1, -3
  491. C = A( J+1+I, J )
  492. S = -B( J+1+I, J )
  493. C1 = A( J+2+I, J )
  494. S1 = -B( J+2+I, J )
  495. C2 = A( J+3+I, J )
  496. S2 = -B( J+3+I, J )
  497. *
  498. DO K = TOP+1, IHI
  499. TEMP = A( K, J+I )
  500. TEMP1 = A( K, J+I+1 )
  501. TEMP2 = A( K, J+I+2 )
  502. TEMP3 = A( K, J+I+3 )
  503. A( K, J+I+3 ) = C2*TEMP3 + S2*TEMP2
  504. TEMP2 = -S2*TEMP3 + C2*TEMP2
  505. A( K, J+I+2 ) = C1*TEMP2 + S1*TEMP1
  506. TEMP1 = -S1*TEMP2 + C1*TEMP1
  507. A( K, J+I+1 ) = C*TEMP1 + S*TEMP
  508. A( K, J+I ) = -S*TEMP1 + C*TEMP
  509. END DO
  510. END DO
  511. *
  512. IF( JJ.GT.0 ) THEN
  513. DO I = JJ, 1, -1
  514. CALL DROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
  515. $ A( TOP+1, J+I ), 1, A( J+1+I, J ),
  516. $ -B( J+1+I, J ) )
  517. END DO
  518. END IF
  519. *
  520. * Update (J+1)th column of A by transformations from left.
  521. *
  522. IF ( J .LT. JCOL + NNB - 1 ) THEN
  523. LEN = 1 + J - JCOL
  524. *
  525. * Multiply with the trailing accumulated orthogonal
  526. * matrix, which takes the form
  527. *
  528. * [ U11 U12 ]
  529. * U = [ ],
  530. * [ U21 U22 ]
  531. *
  532. * where U21 is a LEN-by-LEN matrix and U12 is lower
  533. * triangular.
  534. *
  535. JROW = IHI - NBLST + 1
  536. CALL DGEMV( 'Transpose', NBLST, LEN, ONE, WORK,
  537. $ NBLST, A( JROW, J+1 ), 1, ZERO,
  538. $ WORK( PW ), 1 )
  539. PPW = PW + LEN
  540. DO I = JROW, JROW+NBLST-LEN-1
  541. WORK( PPW ) = A( I, J+1 )
  542. PPW = PPW + 1
  543. END DO
  544. CALL DTRMV( 'Lower', 'Transpose', 'Non-unit',
  545. $ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
  546. $ WORK( PW+LEN ), 1 )
  547. CALL DGEMV( 'Transpose', LEN, NBLST-LEN, ONE,
  548. $ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
  549. $ A( JROW+NBLST-LEN, J+1 ), 1, ONE,
  550. $ WORK( PW+LEN ), 1 )
  551. PPW = PW
  552. DO I = JROW, JROW+NBLST-1
  553. A( I, J+1 ) = WORK( PPW )
  554. PPW = PPW + 1
  555. END DO
  556. *
  557. * Multiply with the other accumulated orthogonal
  558. * matrices, which take the form
  559. *
  560. * [ U11 U12 0 ]
  561. * [ ]
  562. * U = [ U21 U22 0 ],
  563. * [ ]
  564. * [ 0 0 I ]
  565. *
  566. * where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
  567. * matrix, U21 is a LEN-by-LEN upper triangular matrix
  568. * and U12 is an NNB-by-NNB lower triangular matrix.
  569. *
  570. PPWO = 1 + NBLST*NBLST
  571. J0 = JROW - NNB
  572. DO JROW = J0, JCOL+1, -NNB
  573. PPW = PW + LEN
  574. DO I = JROW, JROW+NNB-1
  575. WORK( PPW ) = A( I, J+1 )
  576. PPW = PPW + 1
  577. END DO
  578. PPW = PW
  579. DO I = JROW+NNB, JROW+NNB+LEN-1
  580. WORK( PPW ) = A( I, J+1 )
  581. PPW = PPW + 1
  582. END DO
  583. CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', LEN,
  584. $ WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
  585. $ 1 )
  586. CALL DTRMV( 'Lower', 'Transpose', 'Non-unit', NNB,
  587. $ WORK( PPWO + 2*LEN*NNB ),
  588. $ 2*NNB, WORK( PW + LEN ), 1 )
  589. CALL DGEMV( 'Transpose', NNB, LEN, ONE,
  590. $ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
  591. $ ONE, WORK( PW ), 1 )
  592. CALL DGEMV( 'Transpose', LEN, NNB, ONE,
  593. $ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
  594. $ A( JROW+NNB, J+1 ), 1, ONE,
  595. $ WORK( PW+LEN ), 1 )
  596. PPW = PW
  597. DO I = JROW, JROW+LEN+NNB-1
  598. A( I, J+1 ) = WORK( PPW )
  599. PPW = PPW + 1
  600. END DO
  601. PPWO = PPWO + 4*NNB*NNB
  602. END DO
  603. END IF
  604. END DO
  605. *
  606. * Apply accumulated orthogonal matrices to A.
  607. *
  608. COLA = N - JCOL - NNB + 1
  609. J = IHI - NBLST + 1
  610. CALL DGEMM( 'Transpose', 'No Transpose', NBLST,
  611. $ COLA, NBLST, ONE, WORK, NBLST,
  612. $ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
  613. $ NBLST )
  614. CALL DLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
  615. $ A( J, JCOL+NNB ), LDA )
  616. PPWO = NBLST*NBLST + 1
  617. J0 = J - NNB
  618. DO J = J0, JCOL+1, -NNB
  619. IF ( BLK22 ) THEN
  620. *
  621. * Exploit the structure of
  622. *
  623. * [ U11 U12 ]
  624. * U = [ ]
  625. * [ U21 U22 ],
  626. *
  627. * where all blocks are NNB-by-NNB, U21 is upper
  628. * triangular and U12 is lower triangular.
  629. *
  630. CALL DORM22( 'Left', 'Transpose', 2*NNB, COLA, NNB,
  631. $ NNB, WORK( PPWO ), 2*NNB,
  632. $ A( J, JCOL+NNB ), LDA, WORK( PW ),
  633. $ LWORK-PW+1, IERR )
  634. ELSE
  635. *
  636. * Ignore the structure of U.
  637. *
  638. CALL DGEMM( 'Transpose', 'No Transpose', 2*NNB,
  639. $ COLA, 2*NNB, ONE, WORK( PPWO ), 2*NNB,
  640. $ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
  641. $ 2*NNB )
  642. CALL DLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
  643. $ A( J, JCOL+NNB ), LDA )
  644. END IF
  645. PPWO = PPWO + 4*NNB*NNB
  646. END DO
  647. *
  648. * Apply accumulated orthogonal matrices to Q.
  649. *
  650. IF( WANTQ ) THEN
  651. J = IHI - NBLST + 1
  652. IF ( INITQ ) THEN
  653. TOPQ = MAX( 2, J - JCOL + 1 )
  654. NH = IHI - TOPQ + 1
  655. ELSE
  656. TOPQ = 1
  657. NH = N
  658. END IF
  659. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  660. $ NBLST, NBLST, ONE, Q( TOPQ, J ), LDQ,
  661. $ WORK, NBLST, ZERO, WORK( PW ), NH )
  662. CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  663. $ Q( TOPQ, J ), LDQ )
  664. PPWO = NBLST*NBLST + 1
  665. J0 = J - NNB
  666. DO J = J0, JCOL+1, -NNB
  667. IF ( INITQ ) THEN
  668. TOPQ = MAX( 2, J - JCOL + 1 )
  669. NH = IHI - TOPQ + 1
  670. END IF
  671. IF ( BLK22 ) THEN
  672. *
  673. * Exploit the structure of U.
  674. *
  675. CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
  676. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  677. $ Q( TOPQ, J ), LDQ, WORK( PW ),
  678. $ LWORK-PW+1, IERR )
  679. ELSE
  680. *
  681. * Ignore the structure of U.
  682. *
  683. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  684. $ 2*NNB, 2*NNB, ONE, Q( TOPQ, J ), LDQ,
  685. $ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
  686. $ NH )
  687. CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  688. $ Q( TOPQ, J ), LDQ )
  689. END IF
  690. PPWO = PPWO + 4*NNB*NNB
  691. END DO
  692. END IF
  693. *
  694. * Accumulate right Givens rotations if required.
  695. *
  696. IF ( WANTZ .OR. TOP.GT.0 ) THEN
  697. *
  698. * Initialize small orthogonal factors that will hold the
  699. * accumulated Givens rotations in workspace.
  700. *
  701. CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK,
  702. $ NBLST )
  703. PW = NBLST * NBLST + 1
  704. DO I = 1, N2NB
  705. CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
  706. $ WORK( PW ), 2*NNB )
  707. PW = PW + 4*NNB*NNB
  708. END DO
  709. *
  710. * Accumulate Givens rotations into workspace array.
  711. *
  712. DO J = JCOL, JCOL+NNB-1
  713. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  714. LEN = 2 + J - JCOL
  715. JROW = J + N2NB*NNB + 2
  716. DO I = IHI, JROW, -1
  717. C = A( I, J )
  718. A( I, J ) = ZERO
  719. S = B( I, J )
  720. B( I, J ) = ZERO
  721. DO JJ = PPW, PPW+LEN-1
  722. TEMP = WORK( JJ + NBLST )
  723. WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
  724. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  725. END DO
  726. LEN = LEN + 1
  727. PPW = PPW - NBLST - 1
  728. END DO
  729. *
  730. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  731. J0 = JROW - NNB
  732. DO JROW = J0, J+2, -NNB
  733. PPW = PPWO
  734. LEN = 2 + J - JCOL
  735. DO I = JROW+NNB-1, JROW, -1
  736. C = A( I, J )
  737. A( I, J ) = ZERO
  738. S = B( I, J )
  739. B( I, J ) = ZERO
  740. DO JJ = PPW, PPW+LEN-1
  741. TEMP = WORK( JJ + 2*NNB )
  742. WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
  743. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  744. END DO
  745. LEN = LEN + 1
  746. PPW = PPW - 2*NNB - 1
  747. END DO
  748. PPWO = PPWO + 4*NNB*NNB
  749. END DO
  750. END DO
  751. ELSE
  752. *
  753. CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
  754. $ A( JCOL + 2, JCOL ), LDA )
  755. CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
  756. $ B( JCOL + 2, JCOL ), LDB )
  757. END IF
  758. *
  759. * Apply accumulated orthogonal matrices to A and B.
  760. *
  761. IF ( TOP.GT.0 ) THEN
  762. J = IHI - NBLST + 1
  763. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  764. $ NBLST, NBLST, ONE, A( 1, J ), LDA,
  765. $ WORK, NBLST, ZERO, WORK( PW ), TOP )
  766. CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  767. $ A( 1, J ), LDA )
  768. PPWO = NBLST*NBLST + 1
  769. J0 = J - NNB
  770. DO J = J0, JCOL+1, -NNB
  771. IF ( BLK22 ) THEN
  772. *
  773. * Exploit the structure of U.
  774. *
  775. CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
  776. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  777. $ A( 1, J ), LDA, WORK( PW ),
  778. $ LWORK-PW+1, IERR )
  779. ELSE
  780. *
  781. * Ignore the structure of U.
  782. *
  783. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  784. $ 2*NNB, 2*NNB, ONE, A( 1, J ), LDA,
  785. $ WORK( PPWO ), 2*NNB, ZERO,
  786. $ WORK( PW ), TOP )
  787. CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  788. $ A( 1, J ), LDA )
  789. END IF
  790. PPWO = PPWO + 4*NNB*NNB
  791. END DO
  792. *
  793. J = IHI - NBLST + 1
  794. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  795. $ NBLST, NBLST, ONE, B( 1, J ), LDB,
  796. $ WORK, NBLST, ZERO, WORK( PW ), TOP )
  797. CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  798. $ B( 1, J ), LDB )
  799. PPWO = NBLST*NBLST + 1
  800. J0 = J - NNB
  801. DO J = J0, JCOL+1, -NNB
  802. IF ( BLK22 ) THEN
  803. *
  804. * Exploit the structure of U.
  805. *
  806. CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
  807. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  808. $ B( 1, J ), LDB, WORK( PW ),
  809. $ LWORK-PW+1, IERR )
  810. ELSE
  811. *
  812. * Ignore the structure of U.
  813. *
  814. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  815. $ 2*NNB, 2*NNB, ONE, B( 1, J ), LDB,
  816. $ WORK( PPWO ), 2*NNB, ZERO,
  817. $ WORK( PW ), TOP )
  818. CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  819. $ B( 1, J ), LDB )
  820. END IF
  821. PPWO = PPWO + 4*NNB*NNB
  822. END DO
  823. END IF
  824. *
  825. * Apply accumulated orthogonal matrices to Z.
  826. *
  827. IF( WANTZ ) THEN
  828. J = IHI - NBLST + 1
  829. IF ( INITQ ) THEN
  830. TOPQ = MAX( 2, J - JCOL + 1 )
  831. NH = IHI - TOPQ + 1
  832. ELSE
  833. TOPQ = 1
  834. NH = N
  835. END IF
  836. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  837. $ NBLST, NBLST, ONE, Z( TOPQ, J ), LDZ,
  838. $ WORK, NBLST, ZERO, WORK( PW ), NH )
  839. CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  840. $ Z( TOPQ, J ), LDZ )
  841. PPWO = NBLST*NBLST + 1
  842. J0 = J - NNB
  843. DO J = J0, JCOL+1, -NNB
  844. IF ( INITQ ) THEN
  845. TOPQ = MAX( 2, J - JCOL + 1 )
  846. NH = IHI - TOPQ + 1
  847. END IF
  848. IF ( BLK22 ) THEN
  849. *
  850. * Exploit the structure of U.
  851. *
  852. CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
  853. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  854. $ Z( TOPQ, J ), LDZ, WORK( PW ),
  855. $ LWORK-PW+1, IERR )
  856. ELSE
  857. *
  858. * Ignore the structure of U.
  859. *
  860. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  861. $ 2*NNB, 2*NNB, ONE, Z( TOPQ, J ), LDZ,
  862. $ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
  863. $ NH )
  864. CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  865. $ Z( TOPQ, J ), LDZ )
  866. END IF
  867. PPWO = PPWO + 4*NNB*NNB
  868. END DO
  869. END IF
  870. END DO
  871. END IF
  872. *
  873. * Use unblocked code to reduce the rest of the matrix
  874. * Avoid re-initialization of modified Q and Z.
  875. *
  876. COMPQ2 = COMPQ
  877. COMPZ2 = COMPZ
  878. IF ( JCOL.NE.ILO ) THEN
  879. IF ( WANTQ )
  880. $ COMPQ2 = 'V'
  881. IF ( WANTZ )
  882. $ COMPZ2 = 'V'
  883. END IF
  884. *
  885. IF ( JCOL.LT.IHI )
  886. $ CALL DGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
  887. $ LDQ, Z, LDZ, IERR )
  888. WORK( 1 ) = DBLE( LWKOPT )
  889. *
  890. RETURN
  891. *
  892. * End of DGGHD3
  893. *
  894. END