You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_hercond_c.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. *> \brief \b CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_HERCOND_C + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_c.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_c.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_c.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  22. * CAPPLY, INFO, WORK, RWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * LOGICAL CAPPLY
  27. * INTEGER N, LDA, LDAF, INFO
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  32. * REAL C ( * ), RWORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CLA_HERCOND_C computes the infinity norm condition number of
  42. *> op(A) * inv(diag(C)) where C is a REAL vector.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> = 'U': Upper triangle of A is stored;
  52. *> = 'L': Lower triangle of A is stored.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of linear equations, i.e., the order of the
  59. *> matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] A
  63. *> \verbatim
  64. *> A is COMPLEX array, dimension (LDA,N)
  65. *> On entry, the N-by-N matrix A
  66. *> \endverbatim
  67. *>
  68. *> \param[in] LDA
  69. *> \verbatim
  70. *> LDA is INTEGER
  71. *> The leading dimension of the array A. LDA >= max(1,N).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] AF
  75. *> \verbatim
  76. *> AF is COMPLEX array, dimension (LDAF,N)
  77. *> The block diagonal matrix D and the multipliers used to
  78. *> obtain the factor U or L as computed by CHETRF.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDAF
  82. *> \verbatim
  83. *> LDAF is INTEGER
  84. *> The leading dimension of the array AF. LDAF >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> Details of the interchanges and the block structure of D
  91. *> as determined by CHETRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] C
  95. *> \verbatim
  96. *> C is REAL array, dimension (N)
  97. *> The vector C in the formula op(A) * inv(diag(C)).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] CAPPLY
  101. *> \verbatim
  102. *> CAPPLY is LOGICAL
  103. *> If .TRUE. then access the vector C in the formula above.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] INFO
  107. *> \verbatim
  108. *> INFO is INTEGER
  109. *> = 0: Successful exit.
  110. *> i > 0: The ith argument is invalid.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is COMPLEX array, dimension (2*N).
  116. *> Workspace.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] RWORK
  120. *> \verbatim
  121. *> RWORK is REAL array, dimension (N).
  122. *> Workspace.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \ingroup complexHEcomputational
  134. *
  135. * =====================================================================
  136. REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  137. $ CAPPLY, INFO, WORK, RWORK )
  138. *
  139. * -- LAPACK computational routine --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. *
  143. * .. Scalar Arguments ..
  144. CHARACTER UPLO
  145. LOGICAL CAPPLY
  146. INTEGER N, LDA, LDAF, INFO
  147. * ..
  148. * .. Array Arguments ..
  149. INTEGER IPIV( * )
  150. COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  151. REAL C ( * ), RWORK( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Local Scalars ..
  157. INTEGER KASE, I, J
  158. REAL AINVNM, ANORM, TMP
  159. LOGICAL UP, UPPER
  160. COMPLEX ZDUM
  161. * ..
  162. * .. Local Arrays ..
  163. INTEGER ISAVE( 3 )
  164. * ..
  165. * .. External Functions ..
  166. LOGICAL LSAME
  167. EXTERNAL LSAME
  168. * ..
  169. * .. External Subroutines ..
  170. EXTERNAL CLACN2, CHETRS, XERBLA
  171. * ..
  172. * .. Intrinsic Functions ..
  173. INTRINSIC ABS, MAX
  174. * ..
  175. * .. Statement Functions ..
  176. REAL CABS1
  177. * ..
  178. * .. Statement Function Definitions ..
  179. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. CLA_HERCOND_C = 0.0E+0
  184. *
  185. INFO = 0
  186. UPPER = LSAME( UPLO, 'U' )
  187. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  188. INFO = -1
  189. ELSE IF( N.LT.0 ) THEN
  190. INFO = -2
  191. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192. INFO = -4
  193. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  194. INFO = -6
  195. END IF
  196. IF( INFO.NE.0 ) THEN
  197. CALL XERBLA( 'CLA_HERCOND_C', -INFO )
  198. RETURN
  199. END IF
  200. UP = .FALSE.
  201. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  202. *
  203. * Compute norm of op(A)*op2(C).
  204. *
  205. ANORM = 0.0E+0
  206. IF ( UP ) THEN
  207. DO I = 1, N
  208. TMP = 0.0E+0
  209. IF ( CAPPLY ) THEN
  210. DO J = 1, I
  211. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  212. END DO
  213. DO J = I+1, N
  214. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  215. END DO
  216. ELSE
  217. DO J = 1, I
  218. TMP = TMP + CABS1( A( J, I ) )
  219. END DO
  220. DO J = I+1, N
  221. TMP = TMP + CABS1( A( I, J ) )
  222. END DO
  223. END IF
  224. RWORK( I ) = TMP
  225. ANORM = MAX( ANORM, TMP )
  226. END DO
  227. ELSE
  228. DO I = 1, N
  229. TMP = 0.0E+0
  230. IF ( CAPPLY ) THEN
  231. DO J = 1, I
  232. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  233. END DO
  234. DO J = I+1, N
  235. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  236. END DO
  237. ELSE
  238. DO J = 1, I
  239. TMP = TMP + CABS1( A( I, J ) )
  240. END DO
  241. DO J = I+1, N
  242. TMP = TMP + CABS1( A( J, I ) )
  243. END DO
  244. END IF
  245. RWORK( I ) = TMP
  246. ANORM = MAX( ANORM, TMP )
  247. END DO
  248. END IF
  249. *
  250. * Quick return if possible.
  251. *
  252. IF( N.EQ.0 ) THEN
  253. CLA_HERCOND_C = 1.0E+0
  254. RETURN
  255. ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
  256. RETURN
  257. END IF
  258. *
  259. * Estimate the norm of inv(op(A)).
  260. *
  261. AINVNM = 0.0E+0
  262. *
  263. KASE = 0
  264. 10 CONTINUE
  265. CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  266. IF( KASE.NE.0 ) THEN
  267. IF( KASE.EQ.2 ) THEN
  268. *
  269. * Multiply by R.
  270. *
  271. DO I = 1, N
  272. WORK( I ) = WORK( I ) * RWORK( I )
  273. END DO
  274. *
  275. IF ( UP ) THEN
  276. CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
  277. $ WORK, N, INFO )
  278. ELSE
  279. CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
  280. $ WORK, N, INFO )
  281. ENDIF
  282. *
  283. * Multiply by inv(C).
  284. *
  285. IF ( CAPPLY ) THEN
  286. DO I = 1, N
  287. WORK( I ) = WORK( I ) * C( I )
  288. END DO
  289. END IF
  290. ELSE
  291. *
  292. * Multiply by inv(C**H).
  293. *
  294. IF ( CAPPLY ) THEN
  295. DO I = 1, N
  296. WORK( I ) = WORK( I ) * C( I )
  297. END DO
  298. END IF
  299. *
  300. IF ( UP ) THEN
  301. CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
  302. $ WORK, N, INFO )
  303. ELSE
  304. CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
  305. $ WORK, N, INFO )
  306. END IF
  307. *
  308. * Multiply by R.
  309. *
  310. DO I = 1, N
  311. WORK( I ) = WORK( I ) * RWORK( I )
  312. END DO
  313. END IF
  314. GO TO 10
  315. END IF
  316. *
  317. * Compute the estimate of the reciprocal condition number.
  318. *
  319. IF( AINVNM .NE. 0.0E+0 )
  320. $ CLA_HERCOND_C = 1.0E+0 / AINVNM
  321. *
  322. RETURN
  323. *
  324. * End of CLA_HERCOND_C
  325. *
  326. END