You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrs_aa.f 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. *> \brief \b CHETRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CHETRS_AA solves a system of linear equations A*X = B with a complex
  40. *> hermitian matrix A using the factorization A = U**H*T*U or
  41. *> A = L*T*L**H computed by CHETRF_AA.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the details of the factorization are stored
  51. *> as an upper or lower triangular matrix.
  52. *> = 'U': Upper triangular, form is A = U**H*T*U;
  53. *> = 'L': Lower triangular, form is A = L*T*L**H.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrix B. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is COMPLEX array, dimension (LDA,N)
  72. *> Details of factors computed by CHETRF_AA.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges as computed by CHETRF_AA.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] B
  88. *> \verbatim
  89. *> B is COMPLEX array, dimension (LDB,NRHS)
  90. *> On entry, the right hand side matrix B.
  91. *> On exit, the solution matrix X.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LWORK
  106. *> \verbatim
  107. *> LWORK is INTEGER
  108. *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -i, the i-th argument had an illegal value
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \ingroup complexHEcomputational
  127. *
  128. * =====================================================================
  129. SUBROUTINE CHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  130. $ WORK, LWORK, INFO )
  131. *
  132. * -- LAPACK computational routine --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. *
  136. IMPLICIT NONE
  137. *
  138. * .. Scalar Arguments ..
  139. CHARACTER UPLO
  140. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  141. * ..
  142. * .. Array Arguments ..
  143. INTEGER IPIV( * )
  144. COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
  145. * ..
  146. *
  147. * =====================================================================
  148. *
  149. COMPLEX ONE
  150. PARAMETER ( ONE = 1.0E+0 )
  151. * ..
  152. * .. Local Scalars ..
  153. LOGICAL LQUERY, UPPER
  154. INTEGER K, KP, LWKOPT
  155. * ..
  156. * .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL CLACPY, CLACGV, CGTSV, CSWAP, CTRSM, XERBLA
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. INFO = 0
  169. UPPER = LSAME( UPLO, 'U' )
  170. LQUERY = ( LWORK.EQ.-1 )
  171. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172. INFO = -1
  173. ELSE IF( N.LT.0 ) THEN
  174. INFO = -2
  175. ELSE IF( NRHS.LT.0 ) THEN
  176. INFO = -3
  177. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  178. INFO = -5
  179. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  180. INFO = -8
  181. ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  182. INFO = -10
  183. END IF
  184. IF( INFO.NE.0 ) THEN
  185. CALL XERBLA( 'CHETRS_AA', -INFO )
  186. RETURN
  187. ELSE IF( LQUERY ) THEN
  188. LWKOPT = (3*N-2)
  189. WORK( 1 ) = LWKOPT
  190. RETURN
  191. END IF
  192. *
  193. * Quick return if possible
  194. *
  195. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  196. $ RETURN
  197. *
  198. IF( UPPER ) THEN
  199. *
  200. * Solve A*X = B, where A = U**H*T*U.
  201. *
  202. * 1) Forward substitution with U**H
  203. *
  204. IF( N.GT.1 ) THEN
  205. *
  206. * Pivot, P**T * B -> B
  207. *
  208. K = 1
  209. DO WHILE ( K.LE.N )
  210. KP = IPIV( K )
  211. IF( KP.NE.K )
  212. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  213. K = K + 1
  214. END DO
  215. *
  216. * Compute U**H \ B -> B [ (U**H \P**T * B) ]
  217. *
  218. CALL CTRSM( 'L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  219. $ LDA, B( 2, 1 ), LDB)
  220. END IF
  221. *
  222. * 2) Solve with triangular matrix T
  223. *
  224. * Compute T \ B -> B [ T \ (U**H \P**T * B) ]
  225. *
  226. CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  227. IF( N.GT.1 ) THEN
  228. CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1)
  229. CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1)
  230. CALL CLACGV( N-1, WORK( 1 ), 1 )
  231. END IF
  232. CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  233. $ INFO)
  234. *
  235. * 3) Backward substitution with U
  236. *
  237. IF( N.GT.1 ) THEN
  238. *
  239. * Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
  240. *
  241. CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  242. $ LDA, B(2, 1), LDB)
  243. *
  244. * Pivot, P * B -> B [ P * (U \ (T \ (U**H \P**T * B) )) ]
  245. *
  246. K = N
  247. DO WHILE ( K.GE.1 )
  248. KP = IPIV( K )
  249. IF( KP.NE.K )
  250. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  251. K = K - 1
  252. END DO
  253. END IF
  254. *
  255. ELSE
  256. *
  257. * Solve A*X = B, where A = L*T*L**H.
  258. *
  259. * 1) Forward substitution with L
  260. *
  261. IF( N.GT.1 ) THEN
  262. *
  263. * Pivot, P**T * B -> B
  264. *
  265. K = 1
  266. DO WHILE ( K.LE.N )
  267. KP = IPIV( K )
  268. IF( KP.NE.K )
  269. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  270. K = K + 1
  271. END DO
  272. *
  273. * Compute L \ B -> B [ (L \P**T * B) ]
  274. *
  275. CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1),
  276. $ LDA, B(2, 1), LDB )
  277. END IF
  278. *
  279. * 2) Solve with triangular matrix T
  280. *
  281. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  282. *
  283. CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  284. IF( N.GT.1 ) THEN
  285. CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
  286. CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
  287. CALL CLACGV( N-1, WORK( 2*N ), 1 )
  288. END IF
  289. CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  290. $ INFO)
  291. *
  292. * 3) Backward substitution with L**H
  293. *
  294. IF( N.GT.1 ) THEN
  295. *
  296. * Compute (L**H \ B) -> B [ L**H \ (T \ (L \P**T * B) ) ]
  297. *
  298. CALL CTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  299. $ LDA, B( 2, 1 ), LDB )
  300. *
  301. * Pivot, P * B -> B [ P * (L**H \ (T \ (L \P**T * B) )) ]
  302. *
  303. K = N
  304. DO WHILE ( K.GE.1 )
  305. KP = IPIV( K )
  306. IF( KP.NE.K )
  307. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  308. K = K - 1
  309. END DO
  310. END IF
  311. *
  312. END IF
  313. *
  314. RETURN
  315. *
  316. * End of CHETRS_AA
  317. *
  318. END