You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cheevd.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. *> \brief <b> CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHEEVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
  22. * LRWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL RWORK( * ), W( * )
  31. * COMPLEX A( LDA, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
  41. *> complex Hermitian matrix A. If eigenvectors are desired, it uses a
  42. *> divide and conquer algorithm.
  43. *>
  44. *> The divide and conquer algorithm makes very mild assumptions about
  45. *> floating point arithmetic. It will work on machines with a guard
  46. *> digit in add/subtract, or on those binary machines without guard
  47. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  48. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  49. *> without guard digits, but we know of none.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] JOBZ
  56. *> \verbatim
  57. *> JOBZ is CHARACTER*1
  58. *> = 'N': Compute eigenvalues only;
  59. *> = 'V': Compute eigenvalues and eigenvectors.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] UPLO
  63. *> \verbatim
  64. *> UPLO is CHARACTER*1
  65. *> = 'U': Upper triangle of A is stored;
  66. *> = 'L': Lower triangle of A is stored.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] A
  76. *> \verbatim
  77. *> A is COMPLEX array, dimension (LDA, N)
  78. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  79. *> leading N-by-N upper triangular part of A contains the
  80. *> upper triangular part of the matrix A. If UPLO = 'L',
  81. *> the leading N-by-N lower triangular part of A contains
  82. *> the lower triangular part of the matrix A.
  83. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  84. *> orthonormal eigenvectors of the matrix A.
  85. *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
  86. *> or the upper triangle (if UPLO='U') of A, including the
  87. *> diagonal, is destroyed.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[out] W
  97. *> \verbatim
  98. *> W is REAL array, dimension (N)
  99. *> If INFO = 0, the eigenvalues in ascending order.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] WORK
  103. *> \verbatim
  104. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  105. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LWORK
  109. *> \verbatim
  110. *> LWORK is INTEGER
  111. *> The length of the array WORK.
  112. *> If N <= 1, LWORK must be at least 1.
  113. *> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
  114. *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
  115. *>
  116. *> If LWORK = -1, then a workspace query is assumed; the routine
  117. *> only calculates the optimal sizes of the WORK, RWORK and
  118. *> IWORK arrays, returns these values as the first entries of
  119. *> the WORK, RWORK and IWORK arrays, and no error message
  120. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] RWORK
  124. *> \verbatim
  125. *> RWORK is REAL array,
  126. *> dimension (LRWORK)
  127. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LRWORK
  131. *> \verbatim
  132. *> LRWORK is INTEGER
  133. *> The dimension of the array RWORK.
  134. *> If N <= 1, LRWORK must be at least 1.
  135. *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
  136. *> If JOBZ = 'V' and N > 1, LRWORK must be at least
  137. *> 1 + 5*N + 2*N**2.
  138. *>
  139. *> If LRWORK = -1, then a workspace query is assumed; the
  140. *> routine only calculates the optimal sizes of the WORK, RWORK
  141. *> and IWORK arrays, returns these values as the first entries
  142. *> of the WORK, RWORK and IWORK arrays, and no error message
  143. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] IWORK
  147. *> \verbatim
  148. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  149. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] LIWORK
  153. *> \verbatim
  154. *> LIWORK is INTEGER
  155. *> The dimension of the array IWORK.
  156. *> If N <= 1, LIWORK must be at least 1.
  157. *> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
  158. *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  159. *>
  160. *> If LIWORK = -1, then a workspace query is assumed; the
  161. *> routine only calculates the optimal sizes of the WORK, RWORK
  162. *> and IWORK arrays, returns these values as the first entries
  163. *> of the WORK, RWORK and IWORK arrays, and no error message
  164. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  165. *> \endverbatim
  166. *>
  167. *> \param[out] INFO
  168. *> \verbatim
  169. *> INFO is INTEGER
  170. *> = 0: successful exit
  171. *> < 0: if INFO = -i, the i-th argument had an illegal value
  172. *> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
  173. *> to converge; i off-diagonal elements of an intermediate
  174. *> tridiagonal form did not converge to zero;
  175. *> if INFO = i and JOBZ = 'V', then the algorithm failed
  176. *> to compute an eigenvalue while working on the submatrix
  177. *> lying in rows and columns INFO/(N+1) through
  178. *> mod(INFO,N+1).
  179. *> \endverbatim
  180. *
  181. * Authors:
  182. * ========
  183. *
  184. *> \author Univ. of Tennessee
  185. *> \author Univ. of California Berkeley
  186. *> \author Univ. of Colorado Denver
  187. *> \author NAG Ltd.
  188. *
  189. *> \ingroup complexHEeigen
  190. *
  191. *> \par Further Details:
  192. * =====================
  193. *>
  194. *> Modified description of INFO. Sven, 16 Feb 05.
  195. *
  196. *> \par Contributors:
  197. * ==================
  198. *>
  199. *> Jeff Rutter, Computer Science Division, University of California
  200. *> at Berkeley, USA
  201. *>
  202. * =====================================================================
  203. SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
  204. $ LRWORK, IWORK, LIWORK, INFO )
  205. *
  206. * -- LAPACK driver routine --
  207. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  208. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  209. *
  210. * .. Scalar Arguments ..
  211. CHARACTER JOBZ, UPLO
  212. INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
  213. * ..
  214. * .. Array Arguments ..
  215. INTEGER IWORK( * )
  216. REAL RWORK( * ), W( * )
  217. COMPLEX A( LDA, * ), WORK( * )
  218. * ..
  219. *
  220. * =====================================================================
  221. *
  222. * .. Parameters ..
  223. REAL ZERO, ONE
  224. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  225. COMPLEX CONE
  226. PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
  227. * ..
  228. * .. Local Scalars ..
  229. LOGICAL LOWER, LQUERY, WANTZ
  230. INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
  231. $ INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
  232. $ LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
  233. REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  234. $ SMLNUM
  235. * ..
  236. * .. External Functions ..
  237. LOGICAL LSAME
  238. INTEGER ILAENV
  239. REAL CLANHE, SLAMCH
  240. EXTERNAL ILAENV, LSAME, CLANHE, SLAMCH
  241. * ..
  242. * .. External Subroutines ..
  243. EXTERNAL CHETRD, CLACPY, CLASCL, CSTEDC, CUNMTR, SSCAL,
  244. $ SSTERF, XERBLA
  245. * ..
  246. * .. Intrinsic Functions ..
  247. INTRINSIC MAX, SQRT
  248. * ..
  249. * .. Executable Statements ..
  250. *
  251. * Test the input parameters.
  252. *
  253. WANTZ = LSAME( JOBZ, 'V' )
  254. LOWER = LSAME( UPLO, 'L' )
  255. LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  256. *
  257. INFO = 0
  258. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  259. INFO = -1
  260. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  261. INFO = -2
  262. ELSE IF( N.LT.0 ) THEN
  263. INFO = -3
  264. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  265. INFO = -5
  266. END IF
  267. *
  268. IF( INFO.EQ.0 ) THEN
  269. IF( N.LE.1 ) THEN
  270. LWMIN = 1
  271. LRWMIN = 1
  272. LIWMIN = 1
  273. LOPT = LWMIN
  274. LROPT = LRWMIN
  275. LIOPT = LIWMIN
  276. ELSE
  277. IF( WANTZ ) THEN
  278. LWMIN = 2*N + N*N
  279. LRWMIN = 1 + 5*N + 2*N**2
  280. LIWMIN = 3 + 5*N
  281. ELSE
  282. LWMIN = N + 1
  283. LRWMIN = N
  284. LIWMIN = 1
  285. END IF
  286. LOPT = MAX( LWMIN, N +
  287. $ N*ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 ) )
  288. LROPT = LRWMIN
  289. LIOPT = LIWMIN
  290. END IF
  291. WORK( 1 ) = LOPT
  292. RWORK( 1 ) = LROPT
  293. IWORK( 1 ) = LIOPT
  294. *
  295. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  296. INFO = -8
  297. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  298. INFO = -10
  299. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  300. INFO = -12
  301. END IF
  302. END IF
  303. *
  304. IF( INFO.NE.0 ) THEN
  305. CALL XERBLA( 'CHEEVD', -INFO )
  306. RETURN
  307. ELSE IF( LQUERY ) THEN
  308. RETURN
  309. END IF
  310. *
  311. * Quick return if possible
  312. *
  313. IF( N.EQ.0 )
  314. $ RETURN
  315. *
  316. IF( N.EQ.1 ) THEN
  317. W( 1 ) = REAL( A( 1, 1 ) )
  318. IF( WANTZ )
  319. $ A( 1, 1 ) = CONE
  320. RETURN
  321. END IF
  322. *
  323. * Get machine constants.
  324. *
  325. SAFMIN = SLAMCH( 'Safe minimum' )
  326. EPS = SLAMCH( 'Precision' )
  327. SMLNUM = SAFMIN / EPS
  328. BIGNUM = ONE / SMLNUM
  329. RMIN = SQRT( SMLNUM )
  330. RMAX = SQRT( BIGNUM )
  331. *
  332. * Scale matrix to allowable range, if necessary.
  333. *
  334. ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
  335. ISCALE = 0
  336. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  337. ISCALE = 1
  338. SIGMA = RMIN / ANRM
  339. ELSE IF( ANRM.GT.RMAX ) THEN
  340. ISCALE = 1
  341. SIGMA = RMAX / ANRM
  342. END IF
  343. IF( ISCALE.EQ.1 )
  344. $ CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  345. *
  346. * Call CHETRD to reduce Hermitian matrix to tridiagonal form.
  347. *
  348. INDE = 1
  349. INDTAU = 1
  350. INDWRK = INDTAU + N
  351. INDRWK = INDE + N
  352. INDWK2 = INDWRK + N*N
  353. LLWORK = LWORK - INDWRK + 1
  354. LLWRK2 = LWORK - INDWK2 + 1
  355. LLRWK = LRWORK - INDRWK + 1
  356. CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
  357. $ WORK( INDWRK ), LLWORK, IINFO )
  358. *
  359. * For eigenvalues only, call SSTERF. For eigenvectors, first call
  360. * CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
  361. * tridiagonal matrix, then call CUNMTR to multiply it to the
  362. * Householder transformations represented as Householder vectors in
  363. * A.
  364. *
  365. IF( .NOT.WANTZ ) THEN
  366. CALL SSTERF( N, W, RWORK( INDE ), INFO )
  367. ELSE
  368. CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
  369. $ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
  370. $ IWORK, LIWORK, INFO )
  371. CALL CUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
  372. $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
  373. CALL CLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
  374. END IF
  375. *
  376. * If matrix was scaled, then rescale eigenvalues appropriately.
  377. *
  378. IF( ISCALE.EQ.1 ) THEN
  379. IF( INFO.EQ.0 ) THEN
  380. IMAX = N
  381. ELSE
  382. IMAX = INFO - 1
  383. END IF
  384. CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
  385. END IF
  386. *
  387. WORK( 1 ) = LOPT
  388. RWORK( 1 ) = LROPT
  389. IWORK( 1 ) = LIOPT
  390. *
  391. RETURN
  392. *
  393. * End of CHEEVD
  394. *
  395. END