You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_syrk_threaded.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #ifndef CACHE_LINE_SIZE
  39. #define CACHE_LINE_SIZE 8
  40. #endif
  41. #ifndef DIVIDE_RATE
  42. #define DIVIDE_RATE 2
  43. #endif
  44. #ifndef SWITCH_RATIO
  45. #define SWITCH_RATIO 2
  46. #endif
  47. //The array of job_t may overflow the stack.
  48. //Instead, use malloc to alloc job_t.
  49. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  50. #define USE_ALLOC_HEAP
  51. #endif
  52. #ifndef SYRK_LOCAL
  53. #if !defined(LOWER) && !defined(TRANS)
  54. #define SYRK_LOCAL SYRK_UN
  55. #elif !defined(LOWER) && defined(TRANS)
  56. #define SYRK_LOCAL SYRK_UT
  57. #elif defined(LOWER) && !defined(TRANS)
  58. #define SYRK_LOCAL SYRK_LN
  59. #else
  60. #define SYRK_LOCAL SYRK_LT
  61. #endif
  62. #endif
  63. typedef struct {
  64. #ifdef HAVE_C11
  65. _Atomic
  66. #else
  67. volatile
  68. #endif
  69. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  70. } job_t;
  71. #ifndef KERNEL_OPERATION
  72. #ifndef COMPLEX
  73. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  74. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  75. #else
  76. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  77. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  78. #endif
  79. #endif
  80. #ifndef ICOPY_OPERATION
  81. #ifndef TRANS
  82. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  83. #else
  84. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  85. #endif
  86. #endif
  87. #ifndef OCOPY_OPERATION
  88. #ifdef TRANS
  89. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  90. #else
  91. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  92. #endif
  93. #endif
  94. #ifndef A
  95. #define A args -> a
  96. #endif
  97. #ifndef LDA
  98. #define LDA args -> lda
  99. #endif
  100. #ifndef C
  101. #define C args -> c
  102. #endif
  103. #ifndef LDC
  104. #define LDC args -> ldc
  105. #endif
  106. #ifndef M
  107. #define M args -> m
  108. #endif
  109. #ifndef N
  110. #define N args -> n
  111. #endif
  112. #ifndef K
  113. #define K args -> k
  114. #endif
  115. #undef TIMING
  116. #ifdef TIMING
  117. #define START_RPCC() rpcc_counter = rpcc()
  118. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  119. #else
  120. #define START_RPCC()
  121. #define STOP_RPCC(COUNTER)
  122. #endif
  123. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  124. FLOAT *buffer[DIVIDE_RATE];
  125. BLASLONG k, lda, ldc;
  126. BLASLONG m_from, m_to, n_from, n_to;
  127. FLOAT *alpha, *beta;
  128. FLOAT *a, *c;
  129. job_t *job = (job_t *)args -> common;
  130. BLASLONG xxx, bufferside;
  131. BLASLONG ls, min_l, jjs, min_jj;
  132. BLASLONG is, min_i, div_n;
  133. BLASLONG i, current;
  134. #ifdef LOWER
  135. BLASLONG start_i;
  136. #endif
  137. #ifdef TIMING
  138. BLASLONG rpcc_counter;
  139. BLASLONG copy_A = 0;
  140. BLASLONG copy_B = 0;
  141. BLASLONG kernel = 0;
  142. BLASLONG waiting1 = 0;
  143. BLASLONG waiting2 = 0;
  144. BLASLONG waiting3 = 0;
  145. BLASLONG waiting6[MAX_CPU_NUMBER];
  146. BLASLONG ops = 0;
  147. for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
  148. #endif
  149. k = K;
  150. a = (FLOAT *)A;
  151. c = (FLOAT *)C;
  152. lda = LDA;
  153. ldc = LDC;
  154. alpha = (FLOAT *)args -> alpha;
  155. beta = (FLOAT *)args -> beta;
  156. m_from = 0;
  157. m_to = N;
  158. /* Global Range */
  159. n_from = 0;
  160. n_to = N;
  161. if (range_n) {
  162. m_from = range_n[mypos + 0];
  163. m_to = range_n[mypos + 1];
  164. n_from = range_n[0];
  165. n_to = range_n[args -> nthreads];
  166. }
  167. if (beta) {
  168. #if !defined(COMPLEX) || defined(HERK)
  169. if (beta[0] != ONE)
  170. #else
  171. if ((beta[0] != ONE) || (beta[1] != ZERO))
  172. #endif
  173. syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc);
  174. }
  175. if ((k == 0) || (alpha == NULL)) return 0;
  176. if (alpha[0] == ZERO
  177. #if defined(COMPLEX) && !defined(HERK)
  178. && alpha[1] == ZERO
  179. #endif
  180. ) return 0;
  181. #if 0
  182. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to);
  183. #endif
  184. div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  185. buffer[0] = sb;
  186. for (i = 1; i < DIVIDE_RATE; i++) {
  187. buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
  188. }
  189. for(ls = 0; ls < k; ls += min_l){
  190. min_l = k - ls;
  191. if (min_l >= GEMM_Q * 2) {
  192. min_l = GEMM_Q;
  193. } else {
  194. if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
  195. }
  196. min_i = m_to - m_from;
  197. if (min_i >= GEMM_P * 2) {
  198. min_i = GEMM_P;
  199. } else {
  200. if (min_i > GEMM_P) {
  201. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  202. }
  203. }
  204. #ifdef LOWER
  205. xxx = (m_to - m_from - min_i) % GEMM_P;
  206. if (xxx) min_i -= GEMM_P - xxx;
  207. #endif
  208. START_RPCC();
  209. #ifndef LOWER
  210. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
  211. #else
  212. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_to - min_i, sa);
  213. #endif
  214. STOP_RPCC(copy_A);
  215. div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  216. for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
  217. START_RPCC();
  218. /* Make sure if no one is using buffer */
  219. #ifndef LOWER
  220. for (i = 0; i < mypos; i++)
  221. #else
  222. for (i = mypos + 1; i < args -> nthreads; i++)
  223. #endif
  224. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
  225. STOP_RPCC(waiting1);
  226. #ifndef LOWER
  227. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  228. min_jj = MIN(m_to, xxx + div_n) - jjs;
  229. if (xxx == m_from) {
  230. if (min_jj > min_i) min_jj = min_i;
  231. } else {
  232. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  233. }
  234. START_RPCC();
  235. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
  236. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
  237. STOP_RPCC(copy_B);
  238. START_RPCC();
  239. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  240. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
  241. c, ldc, m_from, jjs);
  242. STOP_RPCC(kernel);
  243. #ifdef TIMING
  244. ops += 2 * min_i * min_jj * min_l;
  245. #endif
  246. }
  247. #else
  248. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  249. min_jj = MIN(m_to, xxx + div_n) - jjs;
  250. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  251. START_RPCC();
  252. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs,
  253. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE);
  254. STOP_RPCC(copy_B);
  255. START_RPCC();
  256. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  257. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE,
  258. c, ldc, m_to - min_i, jjs);
  259. STOP_RPCC(kernel);
  260. #ifdef TIMING
  261. ops += 2 * min_i * min_jj * min_l;
  262. #endif
  263. }
  264. #endif
  265. #ifndef LOWER
  266. for (i = 0; i <= mypos; i++)
  267. #else
  268. for (i = mypos; i < args -> nthreads; i++)
  269. #endif
  270. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  271. WMB;
  272. }
  273. #ifndef LOWER
  274. current = mypos + 1;
  275. while (current < args -> nthreads) {
  276. #else
  277. current = mypos - 1;
  278. while (current >= 0) {
  279. #endif
  280. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  281. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  282. START_RPCC();
  283. /* thread has to wait */
  284. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  285. STOP_RPCC(waiting2);
  286. START_RPCC();
  287. #ifndef LOWER
  288. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  289. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  290. c, ldc,
  291. m_from,
  292. xxx);
  293. #else
  294. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  295. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  296. c, ldc,
  297. m_to - min_i,
  298. xxx);
  299. #endif
  300. STOP_RPCC(kernel);
  301. #ifdef TIMING
  302. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  303. #endif
  304. if (m_to - m_from == min_i) {
  305. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  306. }
  307. }
  308. #ifndef LOWER
  309. current ++;
  310. #else
  311. current --;
  312. #endif
  313. }
  314. #ifndef LOWER
  315. for(is = m_from + min_i; is < m_to; is += min_i){
  316. min_i = m_to - is;
  317. #else
  318. start_i = min_i;
  319. for(is = m_from; is < m_to - start_i; is += min_i){
  320. min_i = m_to - start_i - is;
  321. #endif
  322. if (min_i >= GEMM_P * 2) {
  323. min_i = GEMM_P;
  324. } else
  325. if (min_i > GEMM_P) {
  326. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  327. }
  328. START_RPCC();
  329. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  330. STOP_RPCC(copy_A);
  331. current = mypos;
  332. do {
  333. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  334. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  335. START_RPCC();
  336. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  337. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  338. c, ldc, is, xxx);
  339. STOP_RPCC(kernel);
  340. #ifdef TIMING
  341. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  342. #endif
  343. #ifndef LOWER
  344. if (is + min_i >= m_to) {
  345. #else
  346. if (is + min_i >= m_to - start_i) {
  347. #endif
  348. /* Thread doesn't need this buffer any more */
  349. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  350. WMB;
  351. }
  352. }
  353. #ifndef LOWER
  354. current ++;
  355. } while (current != args -> nthreads);
  356. #else
  357. current --;
  358. } while (current >= 0);
  359. #endif
  360. }
  361. }
  362. START_RPCC();
  363. for (i = 0; i < args -> nthreads; i++) {
  364. if (i != mypos) {
  365. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  366. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  367. }
  368. }
  369. }
  370. STOP_RPCC(waiting3);
  371. #ifdef TIMING
  372. BLASLONG waiting = waiting1 + waiting2 + waiting3;
  373. BLASLONG total = copy_A + copy_B + kernel + waiting;
  374. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  375. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  376. (double)waiting1 /(double)total * 100.,
  377. (double)waiting2 /(double)total * 100.,
  378. (double)waiting3 /(double)total * 100.,
  379. (double)ops/(double)kernel / 4. * 100.);
  380. #if 0
  381. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
  382. mypos, copy_A, copy_B, waiting);
  383. fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
  384. mypos,
  385. (double)waiting1/(double)waiting * 100.,
  386. (double)waiting2/(double)waiting * 100.,
  387. (double)waiting3/(double)waiting * 100.);
  388. #endif
  389. fprintf(stderr, "\n");
  390. #endif
  391. return 0;
  392. }
  393. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  394. blas_arg_t newarg;
  395. #ifndef USE_ALLOC_HEAP
  396. job_t job[MAX_CPU_NUMBER];
  397. #else
  398. job_t * job = NULL;
  399. #endif
  400. blas_queue_t queue[MAX_CPU_NUMBER];
  401. BLASLONG range[MAX_CPU_NUMBER + 100];
  402. BLASLONG num_cpu;
  403. BLASLONG nthreads = args -> nthreads;
  404. BLASLONG width, i, j, k;
  405. BLASLONG n, n_from, n_to;
  406. int mode, mask;
  407. double dnum, di, dinum;
  408. if ((nthreads == 1) || (args -> n < nthreads * SWITCH_RATIO)) {
  409. SYRK_LOCAL(args, range_m, range_n, sa, sb, 0);
  410. return 0;
  411. }
  412. #ifndef COMPLEX
  413. #ifdef XDOUBLE
  414. mode = BLAS_XDOUBLE | BLAS_REAL;
  415. mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
  416. #elif defined(DOUBLE)
  417. mode = BLAS_DOUBLE | BLAS_REAL;
  418. mask = DGEMM_UNROLL_MN - 1;
  419. #else
  420. mode = BLAS_SINGLE | BLAS_REAL;
  421. mask = SGEMM_UNROLL_MN - 1;
  422. #endif
  423. #else
  424. #ifdef XDOUBLE
  425. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  426. mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
  427. #elif defined(DOUBLE)
  428. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  429. mask = ZGEMM_UNROLL_MN - 1;
  430. #else
  431. mode = BLAS_SINGLE | BLAS_COMPLEX;
  432. mask = CGEMM_UNROLL_MN - 1;
  433. #endif
  434. #endif
  435. newarg.m = args -> m;
  436. newarg.n = args -> n;
  437. newarg.k = args -> k;
  438. newarg.a = args -> a;
  439. newarg.b = args -> b;
  440. newarg.c = args -> c;
  441. newarg.lda = args -> lda;
  442. newarg.ldb = args -> ldb;
  443. newarg.ldc = args -> ldc;
  444. newarg.alpha = args -> alpha;
  445. newarg.beta = args -> beta;
  446. #ifdef USE_ALLOC_HEAP
  447. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  448. if(job==NULL){
  449. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  450. exit(1);
  451. }
  452. #endif
  453. newarg.common = (void *)job;
  454. if (!range_n) {
  455. n_from = 0;
  456. n_to = args -> n;
  457. } else {
  458. n_from = range_n[0];
  459. n_to = range_n[1] - range_n[0];
  460. }
  461. #ifndef LOWER
  462. range[MAX_CPU_NUMBER] = n_to - n_from;
  463. range[0] = 0;
  464. num_cpu = 0;
  465. i = 0;
  466. n = n_to - n_from;
  467. dnum = (double)n * (double)n /(double)nthreads;
  468. while (i < n){
  469. if (nthreads - num_cpu > 1) {
  470. di = (double)i;
  471. dinum = di * di + dnum;
  472. if (dinum > 0)
  473. width = (((BLASLONG)((sqrt(dinum) - di) + mask)/(mask+1)) * (mask+1) );
  474. else
  475. width = (((BLASLONG)(- di + mask)/(mask+1)) * (mask+1) );
  476. if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1) );
  477. if ((width > n - i) || (width < mask)) width = n - i;
  478. } else {
  479. width = n - i;
  480. }
  481. range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
  482. queue[num_cpu].mode = mode;
  483. queue[num_cpu].routine = inner_thread;
  484. queue[num_cpu].args = &newarg;
  485. queue[num_cpu].range_m = range_m;
  486. queue[num_cpu].sa = NULL;
  487. queue[num_cpu].sb = NULL;
  488. queue[num_cpu].next = &queue[num_cpu + 1];
  489. num_cpu ++;
  490. i += width;
  491. }
  492. for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
  493. #else
  494. range[0] = 0;
  495. num_cpu = 0;
  496. i = 0;
  497. n = n_to - n_from;
  498. dnum = (double)n * (double)n /(double)nthreads;
  499. while (i < n){
  500. if (nthreads - num_cpu > 1) {
  501. di = (double)i;
  502. dinum = di * di +dnum;
  503. if (dinum > 0)
  504. width = (((BLASLONG)((sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  505. else
  506. width = (((BLASLONG)(- di + mask)/(mask+1)) * (mask+1));
  507. if ((width > n - i) || (width < mask)) width = n - i;
  508. } else {
  509. width = n - i;
  510. }
  511. range[num_cpu + 1] = range[num_cpu] + width;
  512. queue[num_cpu].mode = mode;
  513. queue[num_cpu].routine = inner_thread;
  514. queue[num_cpu].args = &newarg;
  515. queue[num_cpu].range_m = range_m;
  516. queue[num_cpu].range_n = range;
  517. queue[num_cpu].sa = NULL;
  518. queue[num_cpu].sb = NULL;
  519. queue[num_cpu].next = &queue[num_cpu + 1];
  520. num_cpu ++;
  521. i += width;
  522. }
  523. #endif
  524. newarg.nthreads = num_cpu;
  525. if (num_cpu) {
  526. for (j = 0; j < num_cpu; j++) {
  527. for (i = 0; i < num_cpu; i++) {
  528. for (k = 0; k < DIVIDE_RATE; k++) {
  529. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  530. }
  531. }
  532. }
  533. queue[0].sa = sa;
  534. queue[0].sb = sb;
  535. queue[num_cpu - 1].next = NULL;
  536. exec_blas(num_cpu, queue);
  537. }
  538. #ifdef USE_ALLOC_HEAP
  539. free(job);
  540. #endif
  541. return 0;
  542. }