You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. #if defined(USE_PTHREAD_LOCK)
  61. static pthread_mutex_t getrf_lock = PTHREAD_MUTEX_INITIALIZER;
  62. #elif defined(USE_PTHREAD_SPINLOCK)
  63. static pthread_spinlock_t getrf_lock = 0;
  64. #else
  65. static BLASULONG getrf_lock = 0UL;
  66. #endif
  67. #if defined(USE_PTHREAD_LOCK)
  68. static pthread_mutex_t getrf_flag_lock = PTHREAD_MUTEX_INITIALIZER;
  69. #elif defined(USE_PTHREAD_SPINLOCK)
  70. static pthread_spinlock_t getrf_flag_lock = 0;
  71. #else
  72. static BLASULONG getrf_flag_lock = 0UL;
  73. #endif
  74. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  75. double m = (double)(M - IS - BK);
  76. double n = (double)(N - IS - BK);
  77. double b = (double)BK;
  78. double a = (double)T;
  79. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  80. }
  81. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  82. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  83. BLASLONG is, min_i;
  84. BLASLONG js, min_j;
  85. BLASLONG jjs, min_jj;
  86. BLASLONG m = args -> m;
  87. BLASLONG n = args -> n;
  88. BLASLONG k = args -> k;
  89. BLASLONG lda = args -> lda;
  90. BLASLONG off = args -> ldb;
  91. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  92. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  93. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  94. FLOAT *sbb = sb;
  95. #if __STDC_VERSION__ >= 201112L
  96. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  97. #else
  98. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  99. #endif
  100. blasint *ipiv = (blasint *)args -> c;
  101. if (range_n) {
  102. n = range_n[1] - range_n[0];
  103. c += range_n[0] * lda * COMPSIZE;
  104. d += range_n[0] * lda * COMPSIZE;
  105. }
  106. if (args -> a == NULL) {
  107. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  108. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  109. } else {
  110. sb = (FLOAT *)args -> a;
  111. }
  112. for (js = 0; js < n; js += REAL_GEMM_R) {
  113. min_j = n - js;
  114. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  115. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  116. min_jj = js + min_j - jjs;
  117. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  118. if (0 && GEMM_UNROLL_N <= 8) {
  119. LASWP_NCOPY(min_jj, off + 1, off + k,
  120. c + (- off + jjs * lda) * COMPSIZE, lda,
  121. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  122. } else {
  123. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  124. #ifdef COMPLEX
  125. ZERO,
  126. #endif
  127. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  128. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  129. }
  130. for (is = 0; is < k; is += GEMM_P) {
  131. min_i = k - is;
  132. if (min_i > GEMM_P) min_i = GEMM_P;
  133. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  134. #ifdef COMPLEX
  135. ZERO,
  136. #endif
  137. sb + k * is * COMPSIZE,
  138. sbb + (jjs - js) * k * COMPSIZE,
  139. c + (is + jjs * lda) * COMPSIZE, lda, is);
  140. }
  141. }
  142. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  143. for (is = 0; is < m; is += GEMM_P){
  144. min_i = m - is;
  145. if (min_i > GEMM_P) min_i = GEMM_P;
  146. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  147. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  148. #ifdef COMPLEX
  149. ZERO,
  150. #endif
  151. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  152. }
  153. }
  154. }
  155. /* Non blocking implementation */
  156. typedef struct {
  157. #if __STDC_VERSION__ >= 201112L
  158. _Atomic
  159. #else
  160. volatile
  161. #endif
  162. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  163. } job_t;
  164. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  165. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  166. #ifndef COMPLEX
  167. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  168. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  169. #else
  170. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  171. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  172. #endif
  173. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  174. job_t *job = (job_t *)args -> common;
  175. BLASLONG xxx, bufferside;
  176. FLOAT *buffer[DIVIDE_RATE];
  177. BLASLONG jjs, min_jj, div_n;
  178. BLASLONG i, current;
  179. BLASLONG is, min_i;
  180. BLASLONG m, n_from, n_to;
  181. BLASLONG k = args -> k;
  182. BLASLONG lda = args -> lda;
  183. BLASLONG off = args -> ldb;
  184. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  185. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  186. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  187. FLOAT *sbb= sb;
  188. blasint *ipiv = (blasint *)args -> c;
  189. BLASLONG jw;
  190. #if __STDC_VERSION__ >= 201112L
  191. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  192. #else
  193. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  194. #endif
  195. if (args -> a == NULL) {
  196. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  197. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  198. } else {
  199. sb = (FLOAT *)args -> a;
  200. }
  201. m = range_m[1] - range_m[0];
  202. n_from = range_n[mypos + 0];
  203. n_to = range_n[mypos + 1];
  204. a += range_m[0] * COMPSIZE;
  205. c += range_m[0] * COMPSIZE;
  206. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  207. buffer[0] = sbb;
  208. for (i = 1; i < DIVIDE_RATE; i++) {
  209. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  210. }
  211. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  212. for (i = 0; i < args -> nthreads; i++)
  213. #if 1
  214. {
  215. do {
  216. LOCK_COMMAND(&getrf_lock);
  217. jw = job[mypos].working[i][CACHE_LINE_SIZE * bufferside];
  218. UNLOCK_COMMAND(&getrf_lock);
  219. } while (jw);
  220. }
  221. #else
  222. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  223. #endif
  224. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  225. min_jj = MIN(n_to, xxx + div_n) - jjs;
  226. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  227. if (0 && GEMM_UNROLL_N <= 8) {
  228. printf("helllo\n");
  229. LASWP_NCOPY(min_jj, off + 1, off + k,
  230. b + (- off + jjs * lda) * COMPSIZE, lda,
  231. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  232. } else {
  233. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  234. #ifdef COMPLEX
  235. ZERO,
  236. #endif
  237. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  238. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  239. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  240. }
  241. for (is = 0; is < k; is += GEMM_P) {
  242. min_i = k - is;
  243. if (min_i > GEMM_P) min_i = GEMM_P;
  244. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  245. #ifdef COMPLEX
  246. ZERO,
  247. #endif
  248. sb + k * is * COMPSIZE,
  249. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  250. b + (is + jjs * lda) * COMPSIZE, lda, is);
  251. }
  252. }
  253. MB;
  254. for (i = 0; i < args -> nthreads; i++) {
  255. LOCK_COMMAND(&getrf_lock);
  256. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  257. UNLOCK_COMMAND(&getrf_lock);
  258. }
  259. }
  260. LOCK_COMMAND(&getrf_flag_lock);
  261. flag[mypos * CACHE_LINE_SIZE] = 0;
  262. UNLOCK_COMMAND(&getrf_flag_lock);
  263. if (m == 0) {
  264. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  265. LOCK_COMMAND(&getrf_lock);
  266. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  267. UNLOCK_COMMAND(&getrf_lock);
  268. }
  269. }
  270. for(is = 0; is < m; is += min_i){
  271. min_i = m - is;
  272. if (min_i >= GEMM_P * 2) {
  273. min_i = GEMM_P;
  274. } else
  275. if (min_i > GEMM_P) {
  276. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  277. }
  278. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  279. current = mypos;
  280. do {
  281. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  282. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  283. if ((current != mypos) && (!is)) {
  284. #if 1
  285. do {
  286. LOCK_COMMAND(&getrf_lock);
  287. jw = job[current].working[mypos][CACHE_LINE_SIZE * bufferside];
  288. UNLOCK_COMMAND(&getrf_lock);
  289. } while (jw == 0);
  290. #else
  291. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  292. #endif
  293. }
  294. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  295. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  296. c, lda, is, xxx);
  297. MB;
  298. if (is + min_i >= m) {
  299. LOCK_COMMAND(&getrf_lock);
  300. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  301. UNLOCK_COMMAND(&getrf_lock);
  302. }
  303. }
  304. current ++;
  305. if (current >= args -> nthreads) current = 0;
  306. } while (current != mypos);
  307. }
  308. for (i = 0; i < args -> nthreads; i++) {
  309. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  310. #if 1
  311. do {
  312. LOCK_COMMAND(&getrf_lock);
  313. jw = job[mypos].working[i][CACHE_LINE_SIZE *xxx];
  314. UNLOCK_COMMAND(&getrf_lock);
  315. } while(jw != 0);
  316. #else
  317. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  318. #endif
  319. }
  320. }
  321. return 0;
  322. }
  323. #if 1
  324. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  325. BLASLONG m, n, mn, lda, offset;
  326. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  327. blasint *ipiv, iinfo, info;
  328. int mode;
  329. blas_arg_t newarg;
  330. FLOAT *a, *sbb;
  331. FLOAT dummyalpha[2] = {ZERO, ZERO};
  332. blas_queue_t queue[MAX_CPU_NUMBER];
  333. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  334. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  335. #ifndef USE_ALLOC_HEAP
  336. job_t job[MAX_CPU_NUMBER];
  337. #else
  338. job_t * job=NULL;
  339. #endif
  340. BLASLONG width, nn, mm;
  341. BLASLONG i, j, k, is, bk;
  342. BLASLONG num_cpu;
  343. BLASLONG f;
  344. #ifdef _MSC_VER
  345. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  346. #else
  347. #if __STDC_VERSION__ >= 201112L
  348. _Atomic
  349. #else
  350. volatile
  351. #endif
  352. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  353. #endif
  354. #ifndef COMPLEX
  355. #ifdef XDOUBLE
  356. mode = BLAS_XDOUBLE | BLAS_REAL;
  357. #elif defined(DOUBLE)
  358. mode = BLAS_DOUBLE | BLAS_REAL;
  359. #else
  360. mode = BLAS_SINGLE | BLAS_REAL;
  361. #endif
  362. #else
  363. #ifdef XDOUBLE
  364. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  365. #elif defined(DOUBLE)
  366. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  367. #else
  368. mode = BLAS_SINGLE | BLAS_COMPLEX;
  369. #endif
  370. #endif
  371. m = args -> m;
  372. n = args -> n;
  373. a = (FLOAT *)args -> a;
  374. lda = args -> lda;
  375. ipiv = (blasint *)args -> c;
  376. offset = 0;
  377. if (range_n) {
  378. m -= range_n[0];
  379. n = range_n[1] - range_n[0];
  380. offset = range_n[0];
  381. a += range_n[0] * (lda + 1) * COMPSIZE;
  382. }
  383. if (m <= 0 || n <= 0) return 0;
  384. newarg.c = ipiv;
  385. newarg.lda = lda;
  386. info = 0;
  387. mn = MIN(m, n);
  388. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  389. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  390. if (init_bk <= GEMM_UNROLL_N) {
  391. info = GETF2(args, NULL, range_n, sa, sb, 0);
  392. return info;
  393. }
  394. next_bk = init_bk;
  395. bk = mn;
  396. if (bk > next_bk) bk = next_bk;
  397. range_n_new[0] = offset;
  398. range_n_new[1] = offset + bk;
  399. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  400. if (iinfo && !info) info = iinfo;
  401. #ifdef USE_ALLOC_HEAP
  402. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  403. if(job==NULL){
  404. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  405. exit(1);
  406. }
  407. #endif
  408. newarg.common = (void *)job;
  409. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  410. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  411. is = 0;
  412. num_cpu = 0;
  413. while (is < mn) {
  414. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  415. if (width > mn - is - bk) width = mn - is - bk;
  416. if (width < bk) {
  417. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  418. if (next_bk > bk) next_bk = bk;
  419. width = next_bk;
  420. if (width > mn - is - bk) width = mn - is - bk;
  421. }
  422. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  423. mm = m - bk - is;
  424. nn = n - bk - is;
  425. newarg.a = sb;
  426. newarg.b = a + (is + is * lda) * COMPSIZE;
  427. newarg.d = (void *)flag;
  428. newarg.m = mm;
  429. newarg.n = nn;
  430. newarg.k = bk;
  431. newarg.ldb = is + offset;
  432. nn -= width;
  433. range_n_mine[0] = 0;
  434. range_n_mine[1] = width;
  435. range_N[0] = width;
  436. range_M[0] = 0;
  437. num_cpu = 0;
  438. while (nn > 0){
  439. if (mm >= nn) {
  440. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  441. if (width == 0) width = nn;
  442. if (nn < width) width = nn;
  443. nn -= width;
  444. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  445. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  446. if (width == 0) width = mm;
  447. if (mm < width) width = mm;
  448. if (nn <= 0) width = mm;
  449. mm -= width;
  450. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  451. } else {
  452. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  453. if (width == 0) width = mm;
  454. if (mm < width) width = mm;
  455. mm -= width;
  456. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  457. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  458. if (width == 0) width = nn;
  459. if (nn < width) width = nn;
  460. if (mm <= 0) width = nn;
  461. nn -= width;
  462. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  463. }
  464. queue[num_cpu].mode = mode;
  465. queue[num_cpu].routine = inner_advanced_thread;
  466. queue[num_cpu].args = &newarg;
  467. queue[num_cpu].range_m = &range_M[num_cpu];
  468. queue[num_cpu].range_n = &range_N[0];
  469. queue[num_cpu].sa = NULL;
  470. queue[num_cpu].sb = NULL;
  471. queue[num_cpu].next = &queue[num_cpu + 1];
  472. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  473. num_cpu ++;
  474. }
  475. newarg.nthreads = num_cpu;
  476. if (num_cpu > 0) {
  477. for (j = 0; j < num_cpu; j++) {
  478. for (i = 0; i < num_cpu; i++) {
  479. for (k = 0; k < DIVIDE_RATE; k++) {
  480. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  481. }
  482. }
  483. }
  484. }
  485. is += bk;
  486. bk = mn - is;
  487. if (bk > next_bk) bk = next_bk;
  488. range_n_new[0] = offset + is;
  489. range_n_new[1] = offset + is + bk;
  490. if (num_cpu > 0) {
  491. queue[num_cpu - 1].next = NULL;
  492. exec_blas_async(0, &queue[0]);
  493. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  494. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  495. if (iinfo && !info) info = iinfo + is;
  496. for (i = 0; i < num_cpu; i ++) {
  497. #if 1
  498. LOCK_COMMAND(&getrf_flag_lock);
  499. f=flag[i*CACHE_LINE_SIZE];
  500. UNLOCK_COMMAND(&getrf_flag_lock);
  501. while (f!=0) {
  502. LOCK_COMMAND(&getrf_flag_lock);
  503. f=flag[i*CACHE_LINE_SIZE];
  504. UNLOCK_COMMAND(&getrf_flag_lock);
  505. };
  506. #else
  507. while (flag[i*CACHE_LINE_SIZE]) {};
  508. #endif
  509. }
  510. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  511. } else {
  512. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  513. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  514. if (iinfo && !info) info = iinfo + is;
  515. }
  516. }
  517. next_bk = init_bk;
  518. is = 0;
  519. while (is < mn) {
  520. bk = mn - is;
  521. if (bk > next_bk) bk = next_bk;
  522. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  523. if (width > mn - is - bk) width = mn - is - bk;
  524. if (width < bk) {
  525. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  526. if (next_bk > bk) next_bk = bk;
  527. }
  528. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  529. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  530. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  531. is += bk;
  532. }
  533. #ifdef USE_ALLOC_HEAP
  534. free(job);
  535. #endif
  536. return info;
  537. }
  538. #else
  539. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  540. BLASLONG m, n, mn, lda, offset;
  541. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  542. blasint *ipiv, iinfo, info;
  543. int mode;
  544. blas_arg_t newarg;
  545. FLOAT *a, *sbb;
  546. FLOAT dummyalpha[2] = {ZERO, ZERO};
  547. blas_queue_t queue[MAX_CPU_NUMBER];
  548. BLASLONG range[MAX_CPU_NUMBER + 1];
  549. BLASLONG width, nn, num_cpu;
  550. #if __STDC_VERSION__ >= 201112L
  551. _Atomic
  552. #else
  553. volatile
  554. #endif
  555. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  556. #ifndef COMPLEX
  557. #ifdef XDOUBLE
  558. mode = BLAS_XDOUBLE | BLAS_REAL;
  559. #elif defined(DOUBLE)
  560. mode = BLAS_DOUBLE | BLAS_REAL;
  561. #else
  562. mode = BLAS_SINGLE | BLAS_REAL;
  563. #endif
  564. #else
  565. #ifdef XDOUBLE
  566. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  567. #elif defined(DOUBLE)
  568. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  569. #else
  570. mode = BLAS_SINGLE | BLAS_COMPLEX;
  571. #endif
  572. #endif
  573. m = args -> m;
  574. n = args -> n;
  575. a = (FLOAT *)args -> a;
  576. lda = args -> lda;
  577. ipiv = (blasint *)args -> c;
  578. offset = 0;
  579. if (range_n) {
  580. m -= range_n[0];
  581. n = range_n[1] - range_n[0];
  582. offset = range_n[0];
  583. a += range_n[0] * (lda + 1) * COMPSIZE;
  584. }
  585. if (m <= 0 || n <= 0) return 0;
  586. newarg.c = ipiv;
  587. newarg.lda = lda;
  588. newarg.common = NULL;
  589. newarg.nthreads = args -> nthreads;
  590. mn = MIN(m, n);
  591. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  592. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  593. if (init_bk <= GEMM_UNROLL_N) {
  594. info = GETF2(args, NULL, range_n, sa, sb, 0);
  595. return info;
  596. }
  597. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  598. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  599. if (width > n - init_bk) width = n - init_bk;
  600. if (width < init_bk) {
  601. BLASLONG temp;
  602. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  603. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  604. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  605. if (temp < init_bk) init_bk = temp;
  606. }
  607. next_bk = init_bk;
  608. bk = init_bk;
  609. range_n_new[0] = offset;
  610. range_n_new[1] = offset + bk;
  611. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  612. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  613. is = 0;
  614. num_cpu = 0;
  615. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  616. while (is < mn) {
  617. width = FORMULA1(m, n, is, bk, args -> nthreads);
  618. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  619. if (width < bk) {
  620. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  621. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  622. if (next_bk > bk) next_bk = bk;
  623. #if 0
  624. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  625. #else
  626. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  627. #endif
  628. width = next_bk;
  629. }
  630. if (width > mn - is - bk) {
  631. next_bk = mn - is - bk;
  632. width = next_bk;
  633. }
  634. nn = n - bk - is;
  635. if (width > nn) width = nn;
  636. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  637. range[0] = 0;
  638. range[1] = width;
  639. num_cpu = 1;
  640. nn -= width;
  641. newarg.a = sb;
  642. newarg.b = a + (is + is * lda) * COMPSIZE;
  643. newarg.d = (void *)flag;
  644. newarg.m = m - bk - is;
  645. newarg.n = n - bk - is;
  646. newarg.k = bk;
  647. newarg.ldb = is + offset;
  648. while (nn > 0){
  649. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  650. nn -= width;
  651. if (nn < 0) width = width + nn;
  652. range[num_cpu + 1] = range[num_cpu] + width;
  653. queue[num_cpu].mode = mode;
  654. //queue[num_cpu].routine = inner_advanced_thread;
  655. queue[num_cpu].routine = (void *)inner_basic_thread;
  656. queue[num_cpu].args = &newarg;
  657. queue[num_cpu].range_m = NULL;
  658. queue[num_cpu].range_n = &range[num_cpu];
  659. queue[num_cpu].sa = NULL;
  660. queue[num_cpu].sb = NULL;
  661. queue[num_cpu].next = &queue[num_cpu + 1];
  662. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  663. num_cpu ++;
  664. }
  665. queue[num_cpu - 1].next = NULL;
  666. is += bk;
  667. bk = n - is;
  668. if (bk > next_bk) bk = next_bk;
  669. range_n_new[0] = offset + is;
  670. range_n_new[1] = offset + is + bk;
  671. if (num_cpu > 1) {
  672. exec_blas_async(1, &queue[1]);
  673. #if 0
  674. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  675. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  676. #else
  677. if (range[1] >= bk * 4) {
  678. BLASLONG myrange[2];
  679. myrange[0] = 0;
  680. myrange[1] = bk;
  681. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  682. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  683. myrange[0] = bk;
  684. myrange[1] = range[1];
  685. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  686. } else {
  687. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  688. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  689. }
  690. #endif
  691. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  692. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  693. } else {
  694. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  695. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  696. }
  697. if (iinfo && !info) info = iinfo + is;
  698. }
  699. next_bk = init_bk;
  700. bk = init_bk;
  701. is = 0;
  702. while (is < mn) {
  703. bk = mn - is;
  704. if (bk > next_bk) bk = next_bk;
  705. width = FORMULA1(m, n, is, bk, args -> nthreads);
  706. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  707. if (width < bk) {
  708. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  709. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  710. if (next_bk > bk) next_bk = bk;
  711. #if 0
  712. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  713. #else
  714. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  715. #endif
  716. }
  717. if (width > mn - is - bk) {
  718. next_bk = mn - is - bk;
  719. width = next_bk;
  720. }
  721. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  722. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  723. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  724. is += bk;
  725. }
  726. return info;
  727. }
  728. #endif