You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstedc.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. *> \brief \b DSTEBZ
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEDC + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  22. * LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPZ
  26. * INTEGER INFO, LDZ, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
  40. *> symmetric tridiagonal matrix using the divide and conquer method.
  41. *> The eigenvectors of a full or band real symmetric matrix can also be
  42. *> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
  43. *> matrix to tridiagonal form.
  44. *>
  45. *> This code makes very mild assumptions about floating point
  46. *> arithmetic. It will work on machines with a guard digit in
  47. *> add/subtract, or on those binary machines without guard digits
  48. *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
  49. *> It could conceivably fail on hexadecimal or decimal machines
  50. *> without guard digits, but we know of none. See DLAED3 for details.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] COMPZ
  57. *> \verbatim
  58. *> COMPZ is CHARACTER*1
  59. *> = 'N': Compute eigenvalues only.
  60. *> = 'I': Compute eigenvectors of tridiagonal matrix also.
  61. *> = 'V': Compute eigenvectors of original dense symmetric
  62. *> matrix also. On entry, Z contains the orthogonal
  63. *> matrix used to reduce the original matrix to
  64. *> tridiagonal form.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in,out] D
  74. *> \verbatim
  75. *> D is DOUBLE PRECISION array, dimension (N)
  76. *> On entry, the diagonal elements of the tridiagonal matrix.
  77. *> On exit, if INFO = 0, the eigenvalues in ascending order.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] E
  81. *> \verbatim
  82. *> E is DOUBLE PRECISION array, dimension (N-1)
  83. *> On entry, the subdiagonal elements of the tridiagonal matrix.
  84. *> On exit, E has been destroyed.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] Z
  88. *> \verbatim
  89. *> Z is DOUBLE PRECISION array, dimension (LDZ,N)
  90. *> On entry, if COMPZ = 'V', then Z contains the orthogonal
  91. *> matrix used in the reduction to tridiagonal form.
  92. *> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
  93. *> orthonormal eigenvectors of the original symmetric matrix,
  94. *> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
  95. *> of the symmetric tridiagonal matrix.
  96. *> If COMPZ = 'N', then Z is not referenced.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDZ
  100. *> \verbatim
  101. *> LDZ is INTEGER
  102. *> The leading dimension of the array Z. LDZ >= 1.
  103. *> If eigenvectors are desired, then LDZ >= max(1,N).
  104. *> \endverbatim
  105. *>
  106. *> \param[out] WORK
  107. *> \verbatim
  108. *> WORK is DOUBLE PRECISION array,
  109. *> dimension (LWORK)
  110. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LWORK
  114. *> \verbatim
  115. *> LWORK is INTEGER
  116. *> The dimension of the array WORK.
  117. *> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
  118. *> If COMPZ = 'V' and N > 1 then LWORK must be at least
  119. *> ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
  120. *> where lg( N ) = smallest integer k such
  121. *> that 2**k >= N.
  122. *> If COMPZ = 'I' and N > 1 then LWORK must be at least
  123. *> ( 1 + 4*N + N**2 ).
  124. *> Note that for COMPZ = 'I' or 'V', then if N is less than or
  125. *> equal to the minimum divide size, usually 25, then LWORK need
  126. *> only be max(1,2*(N-1)).
  127. *>
  128. *> If LWORK = -1, then a workspace query is assumed; the routine
  129. *> only calculates the optimal size of the WORK array, returns
  130. *> this value as the first entry of the WORK array, and no error
  131. *> message related to LWORK is issued by XERBLA.
  132. *> \endverbatim
  133. *>
  134. *> \param[out] IWORK
  135. *> \verbatim
  136. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  137. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LIWORK
  141. *> \verbatim
  142. *> LIWORK is INTEGER
  143. *> The dimension of the array IWORK.
  144. *> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
  145. *> If COMPZ = 'V' and N > 1 then LIWORK must be at least
  146. *> ( 6 + 6*N + 5*N*lg N ).
  147. *> If COMPZ = 'I' and N > 1 then LIWORK must be at least
  148. *> ( 3 + 5*N ).
  149. *> Note that for COMPZ = 'I' or 'V', then if N is less than or
  150. *> equal to the minimum divide size, usually 25, then LIWORK
  151. *> need only be 1.
  152. *>
  153. *> If LIWORK = -1, then a workspace query is assumed; the
  154. *> routine only calculates the optimal size of the IWORK array,
  155. *> returns this value as the first entry of the IWORK array, and
  156. *> no error message related to LIWORK is issued by XERBLA.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] INFO
  160. *> \verbatim
  161. *> INFO is INTEGER
  162. *> = 0: successful exit.
  163. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  164. *> > 0: The algorithm failed to compute an eigenvalue while
  165. *> working on the submatrix lying in rows and columns
  166. *> INFO/(N+1) through mod(INFO,N+1).
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \date November 2011
  178. *
  179. *> \ingroup auxOTHERcomputational
  180. *
  181. *> \par Contributors:
  182. * ==================
  183. *>
  184. *> Jeff Rutter, Computer Science Division, University of California
  185. *> at Berkeley, USA \n
  186. *> Modified by Francoise Tisseur, University of Tennessee
  187. *>
  188. * =====================================================================
  189. SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  190. $ LIWORK, INFO )
  191. *
  192. * -- LAPACK computational routine (version 3.4.0) --
  193. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  194. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195. * November 2011
  196. *
  197. * .. Scalar Arguments ..
  198. CHARACTER COMPZ
  199. INTEGER INFO, LDZ, LIWORK, LWORK, N
  200. * ..
  201. * .. Array Arguments ..
  202. INTEGER IWORK( * )
  203. DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  204. * ..
  205. *
  206. * =====================================================================
  207. *
  208. * .. Parameters ..
  209. DOUBLE PRECISION ZERO, ONE, TWO
  210. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  211. * ..
  212. * .. Local Scalars ..
  213. LOGICAL LQUERY
  214. INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
  215. $ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
  216. DOUBLE PRECISION EPS, ORGNRM, P, TINY
  217. * ..
  218. * .. External Functions ..
  219. LOGICAL LSAME
  220. INTEGER ILAENV
  221. DOUBLE PRECISION DLAMCH, DLANST
  222. EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
  223. * ..
  224. * .. External Subroutines ..
  225. EXTERNAL DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
  226. $ DSTEQR, DSTERF, DSWAP, XERBLA
  227. * ..
  228. * .. Intrinsic Functions ..
  229. INTRINSIC ABS, DBLE, INT, LOG, MAX, MOD, SQRT
  230. * ..
  231. * .. Executable Statements ..
  232. *
  233. * Test the input parameters.
  234. *
  235. INFO = 0
  236. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  237. *
  238. IF( LSAME( COMPZ, 'N' ) ) THEN
  239. ICOMPZ = 0
  240. ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  241. ICOMPZ = 1
  242. ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  243. ICOMPZ = 2
  244. ELSE
  245. ICOMPZ = -1
  246. END IF
  247. IF( ICOMPZ.LT.0 ) THEN
  248. INFO = -1
  249. ELSE IF( N.LT.0 ) THEN
  250. INFO = -2
  251. ELSE IF( ( LDZ.LT.1 ) .OR.
  252. $ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
  253. INFO = -6
  254. END IF
  255. *
  256. IF( INFO.EQ.0 ) THEN
  257. *
  258. * Compute the workspace requirements
  259. *
  260. SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
  261. IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
  262. LIWMIN = 1
  263. LWMIN = 1
  264. ELSE IF( N.LE.SMLSIZ ) THEN
  265. LIWMIN = 1
  266. LWMIN = 2*( N - 1 )
  267. ELSE
  268. LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
  269. IF( 2**LGN.LT.N )
  270. $ LGN = LGN + 1
  271. IF( 2**LGN.LT.N )
  272. $ LGN = LGN + 1
  273. IF( ICOMPZ.EQ.1 ) THEN
  274. LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
  275. LIWMIN = 6 + 6*N + 5*N*LGN
  276. ELSE IF( ICOMPZ.EQ.2 ) THEN
  277. LWMIN = 1 + 4*N + N**2
  278. LIWMIN = 3 + 5*N
  279. END IF
  280. END IF
  281. WORK( 1 ) = LWMIN
  282. IWORK( 1 ) = LIWMIN
  283. *
  284. IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
  285. INFO = -8
  286. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
  287. INFO = -10
  288. END IF
  289. END IF
  290. *
  291. IF( INFO.NE.0 ) THEN
  292. CALL XERBLA( 'DSTEDC', -INFO )
  293. RETURN
  294. ELSE IF (LQUERY) THEN
  295. RETURN
  296. END IF
  297. *
  298. * Quick return if possible
  299. *
  300. IF( N.EQ.0 )
  301. $ RETURN
  302. IF( N.EQ.1 ) THEN
  303. IF( ICOMPZ.NE.0 )
  304. $ Z( 1, 1 ) = ONE
  305. RETURN
  306. END IF
  307. *
  308. * If the following conditional clause is removed, then the routine
  309. * will use the Divide and Conquer routine to compute only the
  310. * eigenvalues, which requires (3N + 3N**2) real workspace and
  311. * (2 + 5N + 2N lg(N)) integer workspace.
  312. * Since on many architectures DSTERF is much faster than any other
  313. * algorithm for finding eigenvalues only, it is used here
  314. * as the default. If the conditional clause is removed, then
  315. * information on the size of workspace needs to be changed.
  316. *
  317. * If COMPZ = 'N', use DSTERF to compute the eigenvalues.
  318. *
  319. IF( ICOMPZ.EQ.0 ) THEN
  320. CALL DSTERF( N, D, E, INFO )
  321. GO TO 50
  322. END IF
  323. *
  324. * If N is smaller than the minimum divide size (SMLSIZ+1), then
  325. * solve the problem with another solver.
  326. *
  327. IF( N.LE.SMLSIZ ) THEN
  328. *
  329. CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  330. *
  331. ELSE
  332. *
  333. * If COMPZ = 'V', the Z matrix must be stored elsewhere for later
  334. * use.
  335. *
  336. IF( ICOMPZ.EQ.1 ) THEN
  337. STOREZ = 1 + N*N
  338. ELSE
  339. STOREZ = 1
  340. END IF
  341. *
  342. IF( ICOMPZ.EQ.2 ) THEN
  343. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  344. END IF
  345. *
  346. * Scale.
  347. *
  348. ORGNRM = DLANST( 'M', N, D, E )
  349. IF( ORGNRM.EQ.ZERO )
  350. $ GO TO 50
  351. *
  352. EPS = DLAMCH( 'Epsilon' )
  353. *
  354. START = 1
  355. *
  356. * while ( START <= N )
  357. *
  358. 10 CONTINUE
  359. IF( START.LE.N ) THEN
  360. *
  361. * Let FINISH be the position of the next subdiagonal entry
  362. * such that E( FINISH ) <= TINY or FINISH = N if no such
  363. * subdiagonal exists. The matrix identified by the elements
  364. * between START and FINISH constitutes an independent
  365. * sub-problem.
  366. *
  367. FINISH = START
  368. 20 CONTINUE
  369. IF( FINISH.LT.N ) THEN
  370. TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
  371. $ SQRT( ABS( D( FINISH+1 ) ) )
  372. IF( ABS( E( FINISH ) ).GT.TINY ) THEN
  373. FINISH = FINISH + 1
  374. GO TO 20
  375. END IF
  376. END IF
  377. *
  378. * (Sub) Problem determined. Compute its size and solve it.
  379. *
  380. M = FINISH - START + 1
  381. IF( M.EQ.1 ) THEN
  382. START = FINISH + 1
  383. GO TO 10
  384. END IF
  385. IF( M.GT.SMLSIZ ) THEN
  386. *
  387. * Scale.
  388. *
  389. ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
  390. CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
  391. $ INFO )
  392. CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
  393. $ M-1, INFO )
  394. *
  395. IF( ICOMPZ.EQ.1 ) THEN
  396. STRTRW = 1
  397. ELSE
  398. STRTRW = START
  399. END IF
  400. CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
  401. $ Z( STRTRW, START ), LDZ, WORK( 1 ), N,
  402. $ WORK( STOREZ ), IWORK, INFO )
  403. IF( INFO.NE.0 ) THEN
  404. INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
  405. $ MOD( INFO, ( M+1 ) ) + START - 1
  406. GO TO 50
  407. END IF
  408. *
  409. * Scale back.
  410. *
  411. CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
  412. $ INFO )
  413. *
  414. ELSE
  415. IF( ICOMPZ.EQ.1 ) THEN
  416. *
  417. * Since QR won't update a Z matrix which is larger than
  418. * the length of D, we must solve the sub-problem in a
  419. * workspace and then multiply back into Z.
  420. *
  421. CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
  422. $ WORK( M*M+1 ), INFO )
  423. CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
  424. $ WORK( STOREZ ), N )
  425. CALL DGEMM( 'N', 'N', N, M, M, ONE,
  426. $ WORK( STOREZ ), N, WORK, M, ZERO,
  427. $ Z( 1, START ), LDZ )
  428. ELSE IF( ICOMPZ.EQ.2 ) THEN
  429. CALL DSTEQR( 'I', M, D( START ), E( START ),
  430. $ Z( START, START ), LDZ, WORK, INFO )
  431. ELSE
  432. CALL DSTERF( M, D( START ), E( START ), INFO )
  433. END IF
  434. IF( INFO.NE.0 ) THEN
  435. INFO = START*( N+1 ) + FINISH
  436. GO TO 50
  437. END IF
  438. END IF
  439. *
  440. START = FINISH + 1
  441. GO TO 10
  442. END IF
  443. *
  444. * endwhile
  445. *
  446. * If the problem split any number of times, then the eigenvalues
  447. * will not be properly ordered. Here we permute the eigenvalues
  448. * (and the associated eigenvectors) into ascending order.
  449. *
  450. IF( M.NE.N ) THEN
  451. IF( ICOMPZ.EQ.0 ) THEN
  452. *
  453. * Use Quick Sort
  454. *
  455. CALL DLASRT( 'I', N, D, INFO )
  456. *
  457. ELSE
  458. *
  459. * Use Selection Sort to minimize swaps of eigenvectors
  460. *
  461. DO 40 II = 2, N
  462. I = II - 1
  463. K = I
  464. P = D( I )
  465. DO 30 J = II, N
  466. IF( D( J ).LT.P ) THEN
  467. K = J
  468. P = D( J )
  469. END IF
  470. 30 CONTINUE
  471. IF( K.NE.I ) THEN
  472. D( K ) = D( I )
  473. D( I ) = P
  474. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  475. END IF
  476. 40 CONTINUE
  477. END IF
  478. END IF
  479. END IF
  480. *
  481. 50 CONTINUE
  482. WORK( 1 ) = LWMIN
  483. IWORK( 1 ) = LIWMIN
  484. *
  485. RETURN
  486. *
  487. * End of DSTEDC
  488. *
  489. END