You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantb.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. *> \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANTB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  22. * LDAB, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANTB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n triangular band matrix A, with ( k + 1 ) diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANTB
  45. *> \verbatim
  46. *>
  47. *> ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANTB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the matrix A is upper or lower triangular.
  75. *> = 'U': Upper triangular
  76. *> = 'L': Lower triangular
  77. *> \endverbatim
  78. *>
  79. *> \param[in] DIAG
  80. *> \verbatim
  81. *> DIAG is CHARACTER*1
  82. *> Specifies whether or not the matrix A is unit triangular.
  83. *> = 'N': Non-unit triangular
  84. *> = 'U': Unit triangular
  85. *> \endverbatim
  86. *>
  87. *> \param[in] N
  88. *> \verbatim
  89. *> N is INTEGER
  90. *> The order of the matrix A. N >= 0. When N = 0, ZLANTB is
  91. *> set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] K
  95. *> \verbatim
  96. *> K is INTEGER
  97. *> The number of super-diagonals of the matrix A if UPLO = 'U',
  98. *> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
  99. *> K >= 0.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] AB
  103. *> \verbatim
  104. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  105. *> The upper or lower triangular band matrix A, stored in the
  106. *> first k+1 rows of AB. The j-th column of A is stored
  107. *> in the j-th column of the array AB as follows:
  108. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  109. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  110. *> Note that when DIAG = 'U', the elements of the array AB
  111. *> corresponding to the diagonal elements of the matrix A are
  112. *> not referenced, but are assumed to be one.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDAB
  116. *> \verbatim
  117. *> LDAB is INTEGER
  118. *> The leading dimension of the array AB. LDAB >= K+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  125. *> referenced.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date September 2012
  137. *
  138. *> \ingroup complex16OTHERauxiliary
  139. *
  140. * =====================================================================
  141. DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  142. $ LDAB, WORK )
  143. *
  144. * -- LAPACK auxiliary routine (version 3.4.2) --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. * September 2012
  148. *
  149. * .. Scalar Arguments ..
  150. CHARACTER DIAG, NORM, UPLO
  151. INTEGER K, LDAB, N
  152. * ..
  153. * .. Array Arguments ..
  154. DOUBLE PRECISION WORK( * )
  155. COMPLEX*16 AB( LDAB, * )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. DOUBLE PRECISION ONE, ZERO
  162. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163. * ..
  164. * .. Local Scalars ..
  165. LOGICAL UDIAG
  166. INTEGER I, J, L
  167. DOUBLE PRECISION SCALE, SUM, VALUE
  168. * ..
  169. * .. External Functions ..
  170. LOGICAL LSAME, DISNAN
  171. EXTERNAL LSAME, DISNAN
  172. * ..
  173. * .. External Subroutines ..
  174. EXTERNAL ZLASSQ
  175. * ..
  176. * .. Intrinsic Functions ..
  177. INTRINSIC ABS, MAX, MIN, SQRT
  178. * ..
  179. * .. Executable Statements ..
  180. *
  181. IF( N.EQ.0 ) THEN
  182. VALUE = ZERO
  183. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  184. *
  185. * Find max(abs(A(i,j))).
  186. *
  187. IF( LSAME( DIAG, 'U' ) ) THEN
  188. VALUE = ONE
  189. IF( LSAME( UPLO, 'U' ) ) THEN
  190. DO 20 J = 1, N
  191. DO 10 I = MAX( K+2-J, 1 ), K
  192. SUM = ABS( AB( I, J ) )
  193. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  194. 10 CONTINUE
  195. 20 CONTINUE
  196. ELSE
  197. DO 40 J = 1, N
  198. DO 30 I = 2, MIN( N+1-J, K+1 )
  199. SUM = ABS( AB( I, J ) )
  200. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  201. 30 CONTINUE
  202. 40 CONTINUE
  203. END IF
  204. ELSE
  205. VALUE = ZERO
  206. IF( LSAME( UPLO, 'U' ) ) THEN
  207. DO 60 J = 1, N
  208. DO 50 I = MAX( K+2-J, 1 ), K + 1
  209. SUM = ABS( AB( I, J ) )
  210. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  211. 50 CONTINUE
  212. 60 CONTINUE
  213. ELSE
  214. DO 80 J = 1, N
  215. DO 70 I = 1, MIN( N+1-J, K+1 )
  216. SUM = ABS( AB( I, J ) )
  217. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  218. 70 CONTINUE
  219. 80 CONTINUE
  220. END IF
  221. END IF
  222. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  223. *
  224. * Find norm1(A).
  225. *
  226. VALUE = ZERO
  227. UDIAG = LSAME( DIAG, 'U' )
  228. IF( LSAME( UPLO, 'U' ) ) THEN
  229. DO 110 J = 1, N
  230. IF( UDIAG ) THEN
  231. SUM = ONE
  232. DO 90 I = MAX( K+2-J, 1 ), K
  233. SUM = SUM + ABS( AB( I, J ) )
  234. 90 CONTINUE
  235. ELSE
  236. SUM = ZERO
  237. DO 100 I = MAX( K+2-J, 1 ), K + 1
  238. SUM = SUM + ABS( AB( I, J ) )
  239. 100 CONTINUE
  240. END IF
  241. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  242. 110 CONTINUE
  243. ELSE
  244. DO 140 J = 1, N
  245. IF( UDIAG ) THEN
  246. SUM = ONE
  247. DO 120 I = 2, MIN( N+1-J, K+1 )
  248. SUM = SUM + ABS( AB( I, J ) )
  249. 120 CONTINUE
  250. ELSE
  251. SUM = ZERO
  252. DO 130 I = 1, MIN( N+1-J, K+1 )
  253. SUM = SUM + ABS( AB( I, J ) )
  254. 130 CONTINUE
  255. END IF
  256. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  257. 140 CONTINUE
  258. END IF
  259. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  260. *
  261. * Find normI(A).
  262. *
  263. VALUE = ZERO
  264. IF( LSAME( UPLO, 'U' ) ) THEN
  265. IF( LSAME( DIAG, 'U' ) ) THEN
  266. DO 150 I = 1, N
  267. WORK( I ) = ONE
  268. 150 CONTINUE
  269. DO 170 J = 1, N
  270. L = K + 1 - J
  271. DO 160 I = MAX( 1, J-K ), J - 1
  272. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  273. 160 CONTINUE
  274. 170 CONTINUE
  275. ELSE
  276. DO 180 I = 1, N
  277. WORK( I ) = ZERO
  278. 180 CONTINUE
  279. DO 200 J = 1, N
  280. L = K + 1 - J
  281. DO 190 I = MAX( 1, J-K ), J
  282. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  283. 190 CONTINUE
  284. 200 CONTINUE
  285. END IF
  286. ELSE
  287. IF( LSAME( DIAG, 'U' ) ) THEN
  288. DO 210 I = 1, N
  289. WORK( I ) = ONE
  290. 210 CONTINUE
  291. DO 230 J = 1, N
  292. L = 1 - J
  293. DO 220 I = J + 1, MIN( N, J+K )
  294. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  295. 220 CONTINUE
  296. 230 CONTINUE
  297. ELSE
  298. DO 240 I = 1, N
  299. WORK( I ) = ZERO
  300. 240 CONTINUE
  301. DO 260 J = 1, N
  302. L = 1 - J
  303. DO 250 I = J, MIN( N, J+K )
  304. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  305. 250 CONTINUE
  306. 260 CONTINUE
  307. END IF
  308. END IF
  309. DO 270 I = 1, N
  310. SUM = WORK( I )
  311. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  312. 270 CONTINUE
  313. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  314. *
  315. * Find normF(A).
  316. *
  317. IF( LSAME( UPLO, 'U' ) ) THEN
  318. IF( LSAME( DIAG, 'U' ) ) THEN
  319. SCALE = ONE
  320. SUM = N
  321. IF( K.GT.0 ) THEN
  322. DO 280 J = 2, N
  323. CALL ZLASSQ( MIN( J-1, K ),
  324. $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
  325. $ SUM )
  326. 280 CONTINUE
  327. END IF
  328. ELSE
  329. SCALE = ZERO
  330. SUM = ONE
  331. DO 290 J = 1, N
  332. CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  333. $ 1, SCALE, SUM )
  334. 290 CONTINUE
  335. END IF
  336. ELSE
  337. IF( LSAME( DIAG, 'U' ) ) THEN
  338. SCALE = ONE
  339. SUM = N
  340. IF( K.GT.0 ) THEN
  341. DO 300 J = 1, N - 1
  342. CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
  343. $ SUM )
  344. 300 CONTINUE
  345. END IF
  346. ELSE
  347. SCALE = ZERO
  348. SUM = ONE
  349. DO 310 J = 1, N
  350. CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
  351. $ SUM )
  352. 310 CONTINUE
  353. END IF
  354. END IF
  355. VALUE = SCALE*SQRT( SUM )
  356. END IF
  357. *
  358. ZLANTB = VALUE
  359. RETURN
  360. *
  361. * End of ZLANTB
  362. *
  363. END