|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- *> \brief \b SLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by sbdsqr.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASQ4 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq4.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq4.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq4.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
- * DN1, DN2, TAU, TTYPE, G )
- *
- * .. Scalar Arguments ..
- * INTEGER I0, N0, N0IN, PP, TTYPE
- * REAL DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
- * ..
- * .. Array Arguments ..
- * REAL Z( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLASQ4 computes an approximation TAU to the smallest eigenvalue
- *> using values of d from the previous transform.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] I0
- *> \verbatim
- *> I0 is INTEGER
- *> First index.
- *> \endverbatim
- *>
- *> \param[in] N0
- *> \verbatim
- *> N0 is INTEGER
- *> Last index.
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is REAL array, dimension ( 4*N )
- *> Z holds the qd array.
- *> \endverbatim
- *>
- *> \param[in] PP
- *> \verbatim
- *> PP is INTEGER
- *> PP=0 for ping, PP=1 for pong.
- *> \endverbatim
- *>
- *> \param[in] N0IN
- *> \verbatim
- *> N0IN is INTEGER
- *> The value of N0 at start of EIGTEST.
- *> \endverbatim
- *>
- *> \param[in] DMIN
- *> \verbatim
- *> DMIN is REAL
- *> Minimum value of d.
- *> \endverbatim
- *>
- *> \param[in] DMIN1
- *> \verbatim
- *> DMIN1 is REAL
- *> Minimum value of d, excluding D( N0 ).
- *> \endverbatim
- *>
- *> \param[in] DMIN2
- *> \verbatim
- *> DMIN2 is REAL
- *> Minimum value of d, excluding D( N0 ) and D( N0-1 ).
- *> \endverbatim
- *>
- *> \param[in] DN
- *> \verbatim
- *> DN is REAL
- *> d(N)
- *> \endverbatim
- *>
- *> \param[in] DN1
- *> \verbatim
- *> DN1 is REAL
- *> d(N-1)
- *> \endverbatim
- *>
- *> \param[in] DN2
- *> \verbatim
- *> DN2 is REAL
- *> d(N-2)
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL
- *> This is the shift.
- *> \endverbatim
- *>
- *> \param[out] TTYPE
- *> \verbatim
- *> TTYPE is INTEGER
- *> Shift type.
- *> \endverbatim
- *>
- *> \param[in,out] G
- *> \verbatim
- *> G is REAL
- *> G is passed as an argument in order to save its value between
- *> calls to SLASQ4.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date September 2012
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> CNST1 = 9/16
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
- $ DN1, DN2, TAU, TTYPE, G )
- *
- * -- LAPACK computational routine (version 3.4.2) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * September 2012
- *
- * .. Scalar Arguments ..
- INTEGER I0, N0, N0IN, PP, TTYPE
- REAL DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
- * ..
- * .. Array Arguments ..
- REAL Z( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL CNST1, CNST2, CNST3
- PARAMETER ( CNST1 = 0.5630E0, CNST2 = 1.010E0,
- $ CNST3 = 1.050E0 )
- REAL QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
- PARAMETER ( QURTR = 0.250E0, THIRD = 0.3330E0,
- $ HALF = 0.50E0, ZERO = 0.0E0, ONE = 1.0E0,
- $ TWO = 2.0E0, HUNDRD = 100.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I4, NN, NP
- REAL A2, B1, B2, GAM, GAP1, GAP2, S
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * A negative DMIN forces the shift to take that absolute value
- * TTYPE records the type of shift.
- *
- IF( DMIN.LE.ZERO ) THEN
- TAU = -DMIN
- TTYPE = -1
- RETURN
- END IF
- *
- NN = 4*N0 + PP
- IF( N0IN.EQ.N0 ) THEN
- *
- * No eigenvalues deflated.
- *
- IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
- *
- B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
- B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
- A2 = Z( NN-7 ) + Z( NN-5 )
- *
- * Cases 2 and 3.
- *
- IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
- GAP2 = DMIN2 - A2 - DMIN2*QURTR
- IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
- GAP1 = A2 - DN - ( B2 / GAP2 )*B2
- ELSE
- GAP1 = A2 - DN - ( B1+B2 )
- END IF
- IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
- S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
- TTYPE = -2
- ELSE
- S = ZERO
- IF( DN.GT.B1 )
- $ S = DN - B1
- IF( A2.GT.( B1+B2 ) )
- $ S = MIN( S, A2-( B1+B2 ) )
- S = MAX( S, THIRD*DMIN )
- TTYPE = -3
- END IF
- ELSE
- *
- * Case 4.
- *
- TTYPE = -4
- S = QURTR*DMIN
- IF( DMIN.EQ.DN ) THEN
- GAM = DN
- A2 = ZERO
- IF( Z( NN-5 ) .GT. Z( NN-7 ) )
- $ RETURN
- B2 = Z( NN-5 ) / Z( NN-7 )
- NP = NN - 9
- ELSE
- NP = NN - 2*PP
- B2 = Z( NP-2 )
- GAM = DN1
- IF( Z( NP-4 ) .GT. Z( NP-2 ) )
- $ RETURN
- A2 = Z( NP-4 ) / Z( NP-2 )
- IF( Z( NN-9 ) .GT. Z( NN-11 ) )
- $ RETURN
- B2 = Z( NN-9 ) / Z( NN-11 )
- NP = NN - 13
- END IF
- *
- * Approximate contribution to norm squared from I < NN-1.
- *
- A2 = A2 + B2
- DO 10 I4 = NP, 4*I0 - 1 + PP, -4
- IF( B2.EQ.ZERO )
- $ GO TO 20
- B1 = B2
- IF( Z( I4 ) .GT. Z( I4-2 ) )
- $ RETURN
- B2 = B2*( Z( I4 ) / Z( I4-2 ) )
- A2 = A2 + B2
- IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
- $ GO TO 20
- 10 CONTINUE
- 20 CONTINUE
- A2 = CNST3*A2
- *
- * Rayleigh quotient residual bound.
- *
- IF( A2.LT.CNST1 )
- $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
- END IF
- ELSE IF( DMIN.EQ.DN2 ) THEN
- *
- * Case 5.
- *
- TTYPE = -5
- S = QURTR*DMIN
- *
- * Compute contribution to norm squared from I > NN-2.
- *
- NP = NN - 2*PP
- B1 = Z( NP-2 )
- B2 = Z( NP-6 )
- GAM = DN2
- IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
- $ RETURN
- A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
- *
- * Approximate contribution to norm squared from I < NN-2.
- *
- IF( N0-I0.GT.2 ) THEN
- B2 = Z( NN-13 ) / Z( NN-15 )
- A2 = A2 + B2
- DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
- IF( B2.EQ.ZERO )
- $ GO TO 40
- B1 = B2
- IF( Z( I4 ) .GT. Z( I4-2 ) )
- $ RETURN
- B2 = B2*( Z( I4 ) / Z( I4-2 ) )
- A2 = A2 + B2
- IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
- $ GO TO 40
- 30 CONTINUE
- 40 CONTINUE
- A2 = CNST3*A2
- END IF
- *
- IF( A2.LT.CNST1 )
- $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
- ELSE
- *
- * Case 6, no information to guide us.
- *
- IF( TTYPE.EQ.-6 ) THEN
- G = G + THIRD*( ONE-G )
- ELSE IF( TTYPE.EQ.-18 ) THEN
- G = QURTR*THIRD
- ELSE
- G = QURTR
- END IF
- S = G*DMIN
- TTYPE = -6
- END IF
- *
- ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
- *
- * One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
- *
- IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN
- *
- * Cases 7 and 8.
- *
- TTYPE = -7
- S = THIRD*DMIN1
- IF( Z( NN-5 ).GT.Z( NN-7 ) )
- $ RETURN
- B1 = Z( NN-5 ) / Z( NN-7 )
- B2 = B1
- IF( B2.EQ.ZERO )
- $ GO TO 60
- DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
- A2 = B1
- IF( Z( I4 ).GT.Z( I4-2 ) )
- $ RETURN
- B1 = B1*( Z( I4 ) / Z( I4-2 ) )
- B2 = B2 + B1
- IF( HUNDRD*MAX( B1, A2 ).LT.B2 )
- $ GO TO 60
- 50 CONTINUE
- 60 CONTINUE
- B2 = SQRT( CNST3*B2 )
- A2 = DMIN1 / ( ONE+B2**2 )
- GAP2 = HALF*DMIN2 - A2
- IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
- S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
- ELSE
- S = MAX( S, A2*( ONE-CNST2*B2 ) )
- TTYPE = -8
- END IF
- ELSE
- *
- * Case 9.
- *
- S = QURTR*DMIN1
- IF( DMIN1.EQ.DN1 )
- $ S = HALF*DMIN1
- TTYPE = -9
- END IF
- *
- ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
- *
- * Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
- *
- * Cases 10 and 11.
- *
- IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN
- TTYPE = -10
- S = THIRD*DMIN2
- IF( Z( NN-5 ).GT.Z( NN-7 ) )
- $ RETURN
- B1 = Z( NN-5 ) / Z( NN-7 )
- B2 = B1
- IF( B2.EQ.ZERO )
- $ GO TO 80
- DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
- IF( Z( I4 ).GT.Z( I4-2 ) )
- $ RETURN
- B1 = B1*( Z( I4 ) / Z( I4-2 ) )
- B2 = B2 + B1
- IF( HUNDRD*B1.LT.B2 )
- $ GO TO 80
- 70 CONTINUE
- 80 CONTINUE
- B2 = SQRT( CNST3*B2 )
- A2 = DMIN2 / ( ONE+B2**2 )
- GAP2 = Z( NN-7 ) + Z( NN-9 ) -
- $ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
- IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
- S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
- ELSE
- S = MAX( S, A2*( ONE-CNST2*B2 ) )
- END IF
- ELSE
- S = QURTR*DMIN2
- TTYPE = -11
- END IF
- ELSE IF( N0IN.GT.( N0+2 ) ) THEN
- *
- * Case 12, more than two eigenvalues deflated. No information.
- *
- S = ZERO
- TTYPE = -12
- END IF
- *
- TAU = S
- RETURN
- *
- * End of SLASQ4
- *
- END
|