|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- *> \brief \b DLARFGP generates an elementary reflector (Householder matrix) with non-negatibe beta.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLARFGP + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfgp.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfgp.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfgp.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, N
- * DOUBLE PRECISION ALPHA, TAU
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLARFGP generates a real elementary reflector H of order n, such
- *> that
- *>
- *> H * ( alpha ) = ( beta ), H**T * H = I.
- *> ( x ) ( 0 )
- *>
- *> where alpha and beta are scalars, beta is non-negative, and x is
- *> an (n-1)-element real vector. H is represented in the form
- *>
- *> H = I - tau * ( 1 ) * ( 1 v**T ) ,
- *> ( v )
- *>
- *> where tau is a real scalar and v is a real (n-1)-element
- *> vector.
- *>
- *> If the elements of x are all zero, then tau = 0 and H is taken to be
- *> the unit matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the elementary reflector.
- *> \endverbatim
- *>
- *> \param[in,out] ALPHA
- *> \verbatim
- *> ALPHA is DOUBLE PRECISION
- *> On entry, the value alpha.
- *> On exit, it is overwritten with the value beta.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension
- *> (1+(N-2)*abs(INCX))
- *> On entry, the vector x.
- *> On exit, it is overwritten with the vector v.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between elements of X. INCX > 0.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION
- *> The value tau.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date September 2012
- *
- *> \ingroup doubleOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
- *
- * -- LAPACK auxiliary routine (version 3.4.2) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * September 2012
- *
- * .. Scalar Arguments ..
- INTEGER INCX, N
- DOUBLE PRECISION ALPHA, TAU
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION TWO, ONE, ZERO
- PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J, KNT
- DOUBLE PRECISION BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
- EXTERNAL DLAMCH, DLAPY2, DNRM2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SIGN
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL
- * ..
- * .. Executable Statements ..
- *
- IF( N.LE.0 ) THEN
- TAU = ZERO
- RETURN
- END IF
- *
- XNORM = DNRM2( N-1, X, INCX )
- *
- IF( XNORM.EQ.ZERO ) THEN
- *
- * H = [+/-1, 0; I], sign chosen so ALPHA >= 0
- *
- IF( ALPHA.GE.ZERO ) THEN
- * When TAU.eq.ZERO, the vector is special-cased to be
- * all zeros in the application routines. We do not need
- * to clear it.
- TAU = ZERO
- ELSE
- * However, the application routines rely on explicit
- * zero checks when TAU.ne.ZERO, and we must clear X.
- TAU = TWO
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = 0
- END DO
- ALPHA = -ALPHA
- END IF
- ELSE
- *
- * general case
- *
- BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
- SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
- KNT = 0
- IF( ABS( BETA ).LT.SMLNUM ) THEN
- *
- * XNORM, BETA may be inaccurate; scale X and recompute them
- *
- BIGNUM = ONE / SMLNUM
- 10 CONTINUE
- KNT = KNT + 1
- CALL DSCAL( N-1, BIGNUM, X, INCX )
- BETA = BETA*BIGNUM
- ALPHA = ALPHA*BIGNUM
- IF( ABS( BETA ).LT.SMLNUM )
- $ GO TO 10
- *
- * New BETA is at most 1, at least SMLNUM
- *
- XNORM = DNRM2( N-1, X, INCX )
- BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
- END IF
- SAVEALPHA = ALPHA
- ALPHA = ALPHA + BETA
- IF( BETA.LT.ZERO ) THEN
- BETA = -BETA
- TAU = -ALPHA / BETA
- ELSE
- ALPHA = XNORM * (XNORM/ALPHA)
- TAU = ALPHA / BETA
- ALPHA = -ALPHA
- END IF
- *
- IF ( ABS(TAU).LE.SMLNUM ) THEN
- *
- * In the case where the computed TAU ends up being a denormalized number,
- * it loses relative accuracy. This is a BIG problem. Solution: flush TAU
- * to ZERO. This explains the next IF statement.
- *
- * (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
- * (Thanks Pat. Thanks MathWorks.)
- *
- IF( SAVEALPHA.GE.ZERO ) THEN
- TAU = ZERO
- ELSE
- TAU = TWO
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = 0
- END DO
- BETA = -SAVEALPHA
- END IF
- *
- ELSE
- *
- * This is the general case.
- *
- CALL DSCAL( N-1, ONE / ALPHA, X, INCX )
- *
- END IF
- *
- * If BETA is subnormal, it may lose relative accuracy
- *
- DO 20 J = 1, KNT
- BETA = BETA*SMLNUM
- 20 CONTINUE
- ALPHA = BETA
- END IF
- *
- RETURN
- *
- * End of DLARFGP
- *
- END
|