You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatdf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. *> \brief \b CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATDF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatdf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatdf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatdf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  22. * JPIV )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IJOB, LDZ, N
  26. * REAL RDSCAL, RDSUM
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * ), JPIV( * )
  30. * COMPLEX RHS( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLATDF computes the contribution to the reciprocal Dif-estimate
  40. *> by solving for x in Z * x = b, where b is chosen such that the norm
  41. *> of x is as large as possible. It is assumed that LU decomposition
  42. *> of Z has been computed by CGETC2. On entry RHS = f holds the
  43. *> contribution from earlier solved sub-systems, and on return RHS = x.
  44. *>
  45. *> The factorization of Z returned by CGETC2 has the form
  46. *> Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
  47. *> triangular with unit diagonal elements and U is upper triangular.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] IJOB
  54. *> \verbatim
  55. *> IJOB is INTEGER
  56. *> IJOB = 2: First compute an approximative null-vector e
  57. *> of Z using CGECON, e is normalized and solve for
  58. *> Zx = +-e - f with the sign giving the greater value of
  59. *> 2-norm(x). About 5 times as expensive as Default.
  60. *> IJOB .ne. 2: Local look ahead strategy where
  61. *> all entries of the r.h.s. b is choosen as either +1 or
  62. *> -1. Default.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The number of columns of the matrix Z.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] Z
  72. *> \verbatim
  73. *> Z is REAL array, dimension (LDZ, N)
  74. *> On entry, the LU part of the factorization of the n-by-n
  75. *> matrix Z computed by CGETC2: Z = P * L * U * Q
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDZ
  79. *> \verbatim
  80. *> LDZ is INTEGER
  81. *> The leading dimension of the array Z. LDA >= max(1, N).
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] RHS
  85. *> \verbatim
  86. *> RHS is REAL array, dimension (N).
  87. *> On entry, RHS contains contributions from other subsystems.
  88. *> On exit, RHS contains the solution of the subsystem with
  89. *> entries according to the value of IJOB (see above).
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] RDSUM
  93. *> \verbatim
  94. *> RDSUM is REAL
  95. *> On entry, the sum of squares of computed contributions to
  96. *> the Dif-estimate under computation by CTGSYL, where the
  97. *> scaling factor RDSCAL (see below) has been factored out.
  98. *> On exit, the corresponding sum of squares updated with the
  99. *> contributions from the current sub-system.
  100. *> If TRANS = 'T' RDSUM is not touched.
  101. *> NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL.
  102. *> \endverbatim
  103. *>
  104. *> \param[in,out] RDSCAL
  105. *> \verbatim
  106. *> RDSCAL is REAL
  107. *> On entry, scaling factor used to prevent overflow in RDSUM.
  108. *> On exit, RDSCAL is updated w.r.t. the current contributions
  109. *> in RDSUM.
  110. *> If TRANS = 'T', RDSCAL is not touched.
  111. *> NOTE: RDSCAL only makes sense when CTGSY2 is called by
  112. *> CTGSYL.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] IPIV
  116. *> \verbatim
  117. *> IPIV is INTEGER array, dimension (N).
  118. *> The pivot indices; for 1 <= i <= N, row i of the
  119. *> matrix has been interchanged with row IPIV(i).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] JPIV
  123. *> \verbatim
  124. *> JPIV is INTEGER array, dimension (N).
  125. *> The pivot indices; for 1 <= j <= N, column j of the
  126. *> matrix has been interchanged with column JPIV(j).
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \date September 2012
  138. *
  139. *> \ingroup complexOTHERauxiliary
  140. *
  141. *> \par Further Details:
  142. * =====================
  143. *>
  144. *> This routine is a further developed implementation of algorithm
  145. *> BSOLVE in [1] using complete pivoting in the LU factorization.
  146. *
  147. *> \par Contributors:
  148. * ==================
  149. *>
  150. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  151. *> Umea University, S-901 87 Umea, Sweden.
  152. *
  153. *> \par References:
  154. * ================
  155. *>
  156. *> [1] Bo Kagstrom and Lars Westin,
  157. *> Generalized Schur Methods with Condition Estimators for
  158. *> Solving the Generalized Sylvester Equation, IEEE Transactions
  159. *> on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
  160. *>
  161. *> [2] Peter Poromaa,
  162. *> On Efficient and Robust Estimators for the Separation
  163. *> between two Regular Matrix Pairs with Applications in
  164. *> Condition Estimation. Report UMINF-95.05, Department of
  165. *> Computing Science, Umea University, S-901 87 Umea, Sweden,
  166. *> 1995.
  167. *
  168. * =====================================================================
  169. SUBROUTINE CLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  170. $ JPIV )
  171. *
  172. * -- LAPACK auxiliary routine (version 3.4.2) --
  173. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  174. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  175. * September 2012
  176. *
  177. * .. Scalar Arguments ..
  178. INTEGER IJOB, LDZ, N
  179. REAL RDSCAL, RDSUM
  180. * ..
  181. * .. Array Arguments ..
  182. INTEGER IPIV( * ), JPIV( * )
  183. COMPLEX RHS( * ), Z( LDZ, * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * .. Parameters ..
  189. INTEGER MAXDIM
  190. PARAMETER ( MAXDIM = 2 )
  191. REAL ZERO, ONE
  192. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  193. COMPLEX CONE
  194. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  195. * ..
  196. * .. Local Scalars ..
  197. INTEGER I, INFO, J, K
  198. REAL RTEMP, SCALE, SMINU, SPLUS
  199. COMPLEX BM, BP, PMONE, TEMP
  200. * ..
  201. * .. Local Arrays ..
  202. REAL RWORK( MAXDIM )
  203. COMPLEX WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
  204. * ..
  205. * .. External Subroutines ..
  206. EXTERNAL CAXPY, CCOPY, CGECON, CGESC2, CLASSQ, CLASWP,
  207. $ CSCAL
  208. * ..
  209. * .. External Functions ..
  210. REAL SCASUM
  211. COMPLEX CDOTC
  212. EXTERNAL SCASUM, CDOTC
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC ABS, REAL, SQRT
  216. * ..
  217. * .. Executable Statements ..
  218. *
  219. IF( IJOB.NE.2 ) THEN
  220. *
  221. * Apply permutations IPIV to RHS
  222. *
  223. CALL CLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
  224. *
  225. * Solve for L-part choosing RHS either to +1 or -1.
  226. *
  227. PMONE = -CONE
  228. DO 10 J = 1, N - 1
  229. BP = RHS( J ) + CONE
  230. BM = RHS( J ) - CONE
  231. SPLUS = ONE
  232. *
  233. * Lockahead for L- part RHS(1:N-1) = +-1
  234. * SPLUS and SMIN computed more efficiently than in BSOLVE[1].
  235. *
  236. SPLUS = SPLUS + REAL( CDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
  237. $ J ), 1 ) )
  238. SMINU = REAL( CDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
  239. SPLUS = SPLUS*REAL( RHS( J ) )
  240. IF( SPLUS.GT.SMINU ) THEN
  241. RHS( J ) = BP
  242. ELSE IF( SMINU.GT.SPLUS ) THEN
  243. RHS( J ) = BM
  244. ELSE
  245. *
  246. * In this case the updating sums are equal and we can
  247. * choose RHS(J) +1 or -1. The first time this happens we
  248. * choose -1, thereafter +1. This is a simple way to get
  249. * good estimates of matrices like Byers well-known example
  250. * (see [1]). (Not done in BSOLVE.)
  251. *
  252. RHS( J ) = RHS( J ) + PMONE
  253. PMONE = CONE
  254. END IF
  255. *
  256. * Compute the remaining r.h.s.
  257. *
  258. TEMP = -RHS( J )
  259. CALL CAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  260. 10 CONTINUE
  261. *
  262. * Solve for U- part, lockahead for RHS(N) = +-1. This is not done
  263. * In BSOLVE and will hopefully give us a better estimate because
  264. * any ill-conditioning of the original matrix is transfered to U
  265. * and not to L. U(N, N) is an approximation to sigma_min(LU).
  266. *
  267. CALL CCOPY( N-1, RHS, 1, WORK, 1 )
  268. WORK( N ) = RHS( N ) + CONE
  269. RHS( N ) = RHS( N ) - CONE
  270. SPLUS = ZERO
  271. SMINU = ZERO
  272. DO 30 I = N, 1, -1
  273. TEMP = CONE / Z( I, I )
  274. WORK( I ) = WORK( I )*TEMP
  275. RHS( I ) = RHS( I )*TEMP
  276. DO 20 K = I + 1, N
  277. WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
  278. RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
  279. 20 CONTINUE
  280. SPLUS = SPLUS + ABS( WORK( I ) )
  281. SMINU = SMINU + ABS( RHS( I ) )
  282. 30 CONTINUE
  283. IF( SPLUS.GT.SMINU )
  284. $ CALL CCOPY( N, WORK, 1, RHS, 1 )
  285. *
  286. * Apply the permutations JPIV to the computed solution (RHS)
  287. *
  288. CALL CLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
  289. *
  290. * Compute the sum of squares
  291. *
  292. CALL CLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  293. RETURN
  294. END IF
  295. *
  296. * ENTRY IJOB = 2
  297. *
  298. * Compute approximate nullvector XM of Z
  299. *
  300. CALL CGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
  301. CALL CCOPY( N, WORK( N+1 ), 1, XM, 1 )
  302. *
  303. * Compute RHS
  304. *
  305. CALL CLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
  306. TEMP = CONE / SQRT( CDOTC( N, XM, 1, XM, 1 ) )
  307. CALL CSCAL( N, TEMP, XM, 1 )
  308. CALL CCOPY( N, XM, 1, XP, 1 )
  309. CALL CAXPY( N, CONE, RHS, 1, XP, 1 )
  310. CALL CAXPY( N, -CONE, XM, 1, RHS, 1 )
  311. CALL CGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
  312. CALL CGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
  313. IF( SCASUM( N, XP, 1 ).GT.SCASUM( N, RHS, 1 ) )
  314. $ CALL CCOPY( N, XP, 1, RHS, 1 )
  315. *
  316. * Compute the sum of squares
  317. *
  318. CALL CLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  319. RETURN
  320. *
  321. * End of CLATDF
  322. *
  323. END