You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgtts2.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. *> \brief \b CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGTTS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtts2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtts2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtts2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER ITRANS, LDB, N, NRHS
  25. * ..
  26. * .. Array Arguments ..
  27. * INTEGER IPIV( * )
  28. * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CGTTS2 solves one of the systems of equations
  38. *> A * X = B, A**T * X = B, or A**H * X = B,
  39. *> with a tridiagonal matrix A using the LU factorization computed
  40. *> by CGTTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] ITRANS
  47. *> \verbatim
  48. *> ITRANS is INTEGER
  49. *> Specifies the form of the system of equations.
  50. *> = 0: A * X = B (No transpose)
  51. *> = 1: A**T * X = B (Transpose)
  52. *> = 2: A**H * X = B (Conjugate transpose)
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] DL
  69. *> \verbatim
  70. *> DL is COMPLEX array, dimension (N-1)
  71. *> The (n-1) multipliers that define the matrix L from the
  72. *> LU factorization of A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] D
  76. *> \verbatim
  77. *> D is COMPLEX array, dimension (N)
  78. *> The n diagonal elements of the upper triangular matrix U from
  79. *> the LU factorization of A.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] DU
  83. *> \verbatim
  84. *> DU is COMPLEX array, dimension (N-1)
  85. *> The (n-1) elements of the first super-diagonal of U.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] DU2
  89. *> \verbatim
  90. *> DU2 is COMPLEX array, dimension (N-2)
  91. *> The (n-2) elements of the second super-diagonal of U.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] IPIV
  95. *> \verbatim
  96. *> IPIV is INTEGER array, dimension (N)
  97. *> The pivot indices; for 1 <= i <= n, row i of the matrix was
  98. *> interchanged with row IPIV(i). IPIV(i) will always be either
  99. *> i or i+1; IPIV(i) = i indicates a row interchange was not
  100. *> required.
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] B
  104. *> \verbatim
  105. *> B is COMPLEX array, dimension (LDB,NRHS)
  106. *> On entry, the matrix of right hand side vectors B.
  107. *> On exit, B is overwritten by the solution vectors X.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDB
  111. *> \verbatim
  112. *> LDB is INTEGER
  113. *> The leading dimension of the array B. LDB >= max(1,N).
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date September 2012
  125. *
  126. *> \ingroup complexGTcomputational
  127. *
  128. * =====================================================================
  129. SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  130. *
  131. * -- LAPACK computational routine (version 3.4.2) --
  132. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  133. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134. * September 2012
  135. *
  136. * .. Scalar Arguments ..
  137. INTEGER ITRANS, LDB, N, NRHS
  138. * ..
  139. * .. Array Arguments ..
  140. INTEGER IPIV( * )
  141. COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  142. * ..
  143. *
  144. * =====================================================================
  145. *
  146. * .. Local Scalars ..
  147. INTEGER I, J
  148. COMPLEX TEMP
  149. * ..
  150. * .. Intrinsic Functions ..
  151. INTRINSIC CONJG
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. * Quick return if possible
  156. *
  157. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  158. $ RETURN
  159. *
  160. IF( ITRANS.EQ.0 ) THEN
  161. *
  162. * Solve A*X = B using the LU factorization of A,
  163. * overwriting each right hand side vector with its solution.
  164. *
  165. IF( NRHS.LE.1 ) THEN
  166. J = 1
  167. 10 CONTINUE
  168. *
  169. * Solve L*x = b.
  170. *
  171. DO 20 I = 1, N - 1
  172. IF( IPIV( I ).EQ.I ) THEN
  173. B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  174. ELSE
  175. TEMP = B( I, J )
  176. B( I, J ) = B( I+1, J )
  177. B( I+1, J ) = TEMP - DL( I )*B( I, J )
  178. END IF
  179. 20 CONTINUE
  180. *
  181. * Solve U*x = b.
  182. *
  183. B( N, J ) = B( N, J ) / D( N )
  184. IF( N.GT.1 )
  185. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  186. $ D( N-1 )
  187. DO 30 I = N - 2, 1, -1
  188. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  189. $ B( I+2, J ) ) / D( I )
  190. 30 CONTINUE
  191. IF( J.LT.NRHS ) THEN
  192. J = J + 1
  193. GO TO 10
  194. END IF
  195. ELSE
  196. DO 60 J = 1, NRHS
  197. *
  198. * Solve L*x = b.
  199. *
  200. DO 40 I = 1, N - 1
  201. IF( IPIV( I ).EQ.I ) THEN
  202. B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  203. ELSE
  204. TEMP = B( I, J )
  205. B( I, J ) = B( I+1, J )
  206. B( I+1, J ) = TEMP - DL( I )*B( I, J )
  207. END IF
  208. 40 CONTINUE
  209. *
  210. * Solve U*x = b.
  211. *
  212. B( N, J ) = B( N, J ) / D( N )
  213. IF( N.GT.1 )
  214. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  215. $ D( N-1 )
  216. DO 50 I = N - 2, 1, -1
  217. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  218. $ B( I+2, J ) ) / D( I )
  219. 50 CONTINUE
  220. 60 CONTINUE
  221. END IF
  222. ELSE IF( ITRANS.EQ.1 ) THEN
  223. *
  224. * Solve A**T * X = B.
  225. *
  226. IF( NRHS.LE.1 ) THEN
  227. J = 1
  228. 70 CONTINUE
  229. *
  230. * Solve U**T * x = b.
  231. *
  232. B( 1, J ) = B( 1, J ) / D( 1 )
  233. IF( N.GT.1 )
  234. $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  235. DO 80 I = 3, N
  236. B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
  237. $ B( I-2, J ) ) / D( I )
  238. 80 CONTINUE
  239. *
  240. * Solve L**T * x = b.
  241. *
  242. DO 90 I = N - 1, 1, -1
  243. IF( IPIV( I ).EQ.I ) THEN
  244. B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  245. ELSE
  246. TEMP = B( I+1, J )
  247. B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  248. B( I, J ) = TEMP
  249. END IF
  250. 90 CONTINUE
  251. IF( J.LT.NRHS ) THEN
  252. J = J + 1
  253. GO TO 70
  254. END IF
  255. ELSE
  256. DO 120 J = 1, NRHS
  257. *
  258. * Solve U**T * x = b.
  259. *
  260. B( 1, J ) = B( 1, J ) / D( 1 )
  261. IF( N.GT.1 )
  262. $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  263. DO 100 I = 3, N
  264. B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
  265. $ DU2( I-2 )*B( I-2, J ) ) / D( I )
  266. 100 CONTINUE
  267. *
  268. * Solve L**T * x = b.
  269. *
  270. DO 110 I = N - 1, 1, -1
  271. IF( IPIV( I ).EQ.I ) THEN
  272. B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  273. ELSE
  274. TEMP = B( I+1, J )
  275. B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  276. B( I, J ) = TEMP
  277. END IF
  278. 110 CONTINUE
  279. 120 CONTINUE
  280. END IF
  281. ELSE
  282. *
  283. * Solve A**H * X = B.
  284. *
  285. IF( NRHS.LE.1 ) THEN
  286. J = 1
  287. 130 CONTINUE
  288. *
  289. * Solve U**H * x = b.
  290. *
  291. B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
  292. IF( N.GT.1 )
  293. $ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
  294. $ CONJG( D( 2 ) )
  295. DO 140 I = 3, N
  296. B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*B( I-1, J )-
  297. $ CONJG( DU2( I-2 ) )*B( I-2, J ) ) /
  298. $ CONJG( D( I ) )
  299. 140 CONTINUE
  300. *
  301. * Solve L**H * x = b.
  302. *
  303. DO 150 I = N - 1, 1, -1
  304. IF( IPIV( I ).EQ.I ) THEN
  305. B( I, J ) = B( I, J ) - CONJG( DL( I ) )*B( I+1, J )
  306. ELSE
  307. TEMP = B( I+1, J )
  308. B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
  309. B( I, J ) = TEMP
  310. END IF
  311. 150 CONTINUE
  312. IF( J.LT.NRHS ) THEN
  313. J = J + 1
  314. GO TO 130
  315. END IF
  316. ELSE
  317. DO 180 J = 1, NRHS
  318. *
  319. * Solve U**H * x = b.
  320. *
  321. B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
  322. IF( N.GT.1 )
  323. $ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
  324. $ CONJG( D( 2 ) )
  325. DO 160 I = 3, N
  326. B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*
  327. $ B( I-1, J )-CONJG( DU2( I-2 ) )*
  328. $ B( I-2, J ) ) / CONJG( D( I ) )
  329. 160 CONTINUE
  330. *
  331. * Solve L**H * x = b.
  332. *
  333. DO 170 I = N - 1, 1, -1
  334. IF( IPIV( I ).EQ.I ) THEN
  335. B( I, J ) = B( I, J ) - CONJG( DL( I ) )*
  336. $ B( I+1, J )
  337. ELSE
  338. TEMP = B( I+1, J )
  339. B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
  340. B( I, J ) = TEMP
  341. END IF
  342. 170 CONTINUE
  343. 180 CONTINUE
  344. END IF
  345. END IF
  346. *
  347. * End of CGTTS2
  348. *
  349. END