You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggbal.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. *> \brief \b CGGBAL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGGBAL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbal.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbal.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbal.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
  22. * RSCALE, WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOB
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL LSCALE( * ), RSCALE( * ), WORK( * )
  30. * COMPLEX A( LDA, * ), B( LDB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CGGBAL balances a pair of general complex matrices (A,B). This
  40. *> involves, first, permuting A and B by similarity transformations to
  41. *> isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
  42. *> elements on the diagonal; and second, applying a diagonal similarity
  43. *> transformation to rows and columns ILO to IHI to make the rows
  44. *> and columns as close in norm as possible. Both steps are optional.
  45. *>
  46. *> Balancing may reduce the 1-norm of the matrices, and improve the
  47. *> accuracy of the computed eigenvalues and/or eigenvectors in the
  48. *> generalized eigenvalue problem A*x = lambda*B*x.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] JOB
  55. *> \verbatim
  56. *> JOB is CHARACTER*1
  57. *> Specifies the operations to be performed on A and B:
  58. *> = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
  59. *> and RSCALE(I) = 1.0 for i=1,...,N;
  60. *> = 'P': permute only;
  61. *> = 'S': scale only;
  62. *> = 'B': both permute and scale.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrices A and B. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX array, dimension (LDA,N)
  74. *> On entry, the input matrix A.
  75. *> On exit, A is overwritten by the balanced matrix.
  76. *> If JOB = 'N', A is not referenced.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> The leading dimension of the array A. LDA >= max(1,N).
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] B
  86. *> \verbatim
  87. *> B is COMPLEX array, dimension (LDB,N)
  88. *> On entry, the input matrix B.
  89. *> On exit, B is overwritten by the balanced matrix.
  90. *> If JOB = 'N', B is not referenced.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDB
  94. *> \verbatim
  95. *> LDB is INTEGER
  96. *> The leading dimension of the array B. LDB >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] ILO
  100. *> \verbatim
  101. *> ILO is INTEGER
  102. *> \endverbatim
  103. *>
  104. *> \param[out] IHI
  105. *> \verbatim
  106. *> IHI is INTEGER
  107. *> ILO and IHI are set to integers such that on exit
  108. *> A(i,j) = 0 and B(i,j) = 0 if i > j and
  109. *> j = 1,...,ILO-1 or i = IHI+1,...,N.
  110. *> If JOB = 'N' or 'S', ILO = 1 and IHI = N.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] LSCALE
  114. *> \verbatim
  115. *> LSCALE is REAL array, dimension (N)
  116. *> Details of the permutations and scaling factors applied
  117. *> to the left side of A and B. If P(j) is the index of the
  118. *> row interchanged with row j, and D(j) is the scaling factor
  119. *> applied to row j, then
  120. *> LSCALE(j) = P(j) for J = 1,...,ILO-1
  121. *> = D(j) for J = ILO,...,IHI
  122. *> = P(j) for J = IHI+1,...,N.
  123. *> The order in which the interchanges are made is N to IHI+1,
  124. *> then 1 to ILO-1.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] RSCALE
  128. *> \verbatim
  129. *> RSCALE is REAL array, dimension (N)
  130. *> Details of the permutations and scaling factors applied
  131. *> to the right side of A and B. If P(j) is the index of the
  132. *> column interchanged with column j, and D(j) is the scaling
  133. *> factor applied to column j, then
  134. *> RSCALE(j) = P(j) for J = 1,...,ILO-1
  135. *> = D(j) for J = ILO,...,IHI
  136. *> = P(j) for J = IHI+1,...,N.
  137. *> The order in which the interchanges are made is N to IHI+1,
  138. *> then 1 to ILO-1.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is REAL array, dimension (lwork)
  144. *> lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
  145. *> at least 1 when JOB = 'N' or 'P'.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \date November 2011
  164. *
  165. *> \ingroup complexGBcomputational
  166. *
  167. *> \par Further Details:
  168. * =====================
  169. *>
  170. *> \verbatim
  171. *>
  172. *> See R.C. WARD, Balancing the generalized eigenvalue problem,
  173. *> SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  174. *> \endverbatim
  175. *>
  176. * =====================================================================
  177. SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
  178. $ RSCALE, WORK, INFO )
  179. *
  180. * -- LAPACK computational routine (version 3.4.0) --
  181. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  182. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183. * November 2011
  184. *
  185. * .. Scalar Arguments ..
  186. CHARACTER JOB
  187. INTEGER IHI, ILO, INFO, LDA, LDB, N
  188. * ..
  189. * .. Array Arguments ..
  190. REAL LSCALE( * ), RSCALE( * ), WORK( * )
  191. COMPLEX A( LDA, * ), B( LDB, * )
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. Parameters ..
  197. REAL ZERO, HALF, ONE
  198. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
  199. REAL THREE, SCLFAC
  200. PARAMETER ( THREE = 3.0E+0, SCLFAC = 1.0E+1 )
  201. COMPLEX CZERO
  202. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
  203. * ..
  204. * .. Local Scalars ..
  205. INTEGER I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
  206. $ K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
  207. $ M, NR, NRP2
  208. REAL ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
  209. $ COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
  210. $ SFMIN, SUM, T, TA, TB, TC
  211. COMPLEX CDUM
  212. * ..
  213. * .. External Functions ..
  214. LOGICAL LSAME
  215. INTEGER ICAMAX
  216. REAL SDOT, SLAMCH
  217. EXTERNAL LSAME, ICAMAX, SDOT, SLAMCH
  218. * ..
  219. * .. External Subroutines ..
  220. EXTERNAL CSSCAL, CSWAP, SAXPY, SSCAL, XERBLA
  221. * ..
  222. * .. Intrinsic Functions ..
  223. INTRINSIC ABS, AIMAG, INT, LOG10, MAX, MIN, REAL, SIGN
  224. * ..
  225. * .. Statement Functions ..
  226. REAL CABS1
  227. * ..
  228. * .. Statement Function definitions ..
  229. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  230. * ..
  231. * .. Executable Statements ..
  232. *
  233. * Test the input parameters
  234. *
  235. INFO = 0
  236. IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  237. $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  238. INFO = -1
  239. ELSE IF( N.LT.0 ) THEN
  240. INFO = -2
  241. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  242. INFO = -4
  243. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  244. INFO = -6
  245. END IF
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'CGGBAL', -INFO )
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible
  252. *
  253. IF( N.EQ.0 ) THEN
  254. ILO = 1
  255. IHI = N
  256. RETURN
  257. END IF
  258. *
  259. IF( N.EQ.1 ) THEN
  260. ILO = 1
  261. IHI = N
  262. LSCALE( 1 ) = ONE
  263. RSCALE( 1 ) = ONE
  264. RETURN
  265. END IF
  266. *
  267. IF( LSAME( JOB, 'N' ) ) THEN
  268. ILO = 1
  269. IHI = N
  270. DO 10 I = 1, N
  271. LSCALE( I ) = ONE
  272. RSCALE( I ) = ONE
  273. 10 CONTINUE
  274. RETURN
  275. END IF
  276. *
  277. K = 1
  278. L = N
  279. IF( LSAME( JOB, 'S' ) )
  280. $ GO TO 190
  281. *
  282. GO TO 30
  283. *
  284. * Permute the matrices A and B to isolate the eigenvalues.
  285. *
  286. * Find row with one nonzero in columns 1 through L
  287. *
  288. 20 CONTINUE
  289. L = LM1
  290. IF( L.NE.1 )
  291. $ GO TO 30
  292. *
  293. RSCALE( 1 ) = ONE
  294. LSCALE( 1 ) = ONE
  295. GO TO 190
  296. *
  297. 30 CONTINUE
  298. LM1 = L - 1
  299. DO 80 I = L, 1, -1
  300. DO 40 J = 1, LM1
  301. JP1 = J + 1
  302. IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  303. $ GO TO 50
  304. 40 CONTINUE
  305. J = L
  306. GO TO 70
  307. *
  308. 50 CONTINUE
  309. DO 60 J = JP1, L
  310. IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  311. $ GO TO 80
  312. 60 CONTINUE
  313. J = JP1 - 1
  314. *
  315. 70 CONTINUE
  316. M = L
  317. IFLOW = 1
  318. GO TO 160
  319. 80 CONTINUE
  320. GO TO 100
  321. *
  322. * Find column with one nonzero in rows K through N
  323. *
  324. 90 CONTINUE
  325. K = K + 1
  326. *
  327. 100 CONTINUE
  328. DO 150 J = K, L
  329. DO 110 I = K, LM1
  330. IP1 = I + 1
  331. IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  332. $ GO TO 120
  333. 110 CONTINUE
  334. I = L
  335. GO TO 140
  336. 120 CONTINUE
  337. DO 130 I = IP1, L
  338. IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  339. $ GO TO 150
  340. 130 CONTINUE
  341. I = IP1 - 1
  342. 140 CONTINUE
  343. M = K
  344. IFLOW = 2
  345. GO TO 160
  346. 150 CONTINUE
  347. GO TO 190
  348. *
  349. * Permute rows M and I
  350. *
  351. 160 CONTINUE
  352. LSCALE( M ) = I
  353. IF( I.EQ.M )
  354. $ GO TO 170
  355. CALL CSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
  356. CALL CSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
  357. *
  358. * Permute columns M and J
  359. *
  360. 170 CONTINUE
  361. RSCALE( M ) = J
  362. IF( J.EQ.M )
  363. $ GO TO 180
  364. CALL CSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  365. CALL CSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
  366. *
  367. 180 CONTINUE
  368. GO TO ( 20, 90 )IFLOW
  369. *
  370. 190 CONTINUE
  371. ILO = K
  372. IHI = L
  373. *
  374. IF( LSAME( JOB, 'P' ) ) THEN
  375. DO 195 I = ILO, IHI
  376. LSCALE( I ) = ONE
  377. RSCALE( I ) = ONE
  378. 195 CONTINUE
  379. RETURN
  380. END IF
  381. *
  382. IF( ILO.EQ.IHI )
  383. $ RETURN
  384. *
  385. * Balance the submatrix in rows ILO to IHI.
  386. *
  387. NR = IHI - ILO + 1
  388. DO 200 I = ILO, IHI
  389. RSCALE( I ) = ZERO
  390. LSCALE( I ) = ZERO
  391. *
  392. WORK( I ) = ZERO
  393. WORK( I+N ) = ZERO
  394. WORK( I+2*N ) = ZERO
  395. WORK( I+3*N ) = ZERO
  396. WORK( I+4*N ) = ZERO
  397. WORK( I+5*N ) = ZERO
  398. 200 CONTINUE
  399. *
  400. * Compute right side vector in resulting linear equations
  401. *
  402. BASL = LOG10( SCLFAC )
  403. DO 240 I = ILO, IHI
  404. DO 230 J = ILO, IHI
  405. IF( A( I, J ).EQ.CZERO ) THEN
  406. TA = ZERO
  407. GO TO 210
  408. END IF
  409. TA = LOG10( CABS1( A( I, J ) ) ) / BASL
  410. *
  411. 210 CONTINUE
  412. IF( B( I, J ).EQ.CZERO ) THEN
  413. TB = ZERO
  414. GO TO 220
  415. END IF
  416. TB = LOG10( CABS1( B( I, J ) ) ) / BASL
  417. *
  418. 220 CONTINUE
  419. WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
  420. WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  421. 230 CONTINUE
  422. 240 CONTINUE
  423. *
  424. COEF = ONE / REAL( 2*NR )
  425. COEF2 = COEF*COEF
  426. COEF5 = HALF*COEF2
  427. NRP2 = NR + 2
  428. BETA = ZERO
  429. IT = 1
  430. *
  431. * Start generalized conjugate gradient iteration
  432. *
  433. 250 CONTINUE
  434. *
  435. GAMMA = SDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
  436. $ SDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
  437. *
  438. EW = ZERO
  439. EWC = ZERO
  440. DO 260 I = ILO, IHI
  441. EW = EW + WORK( I+4*N )
  442. EWC = EWC + WORK( I+5*N )
  443. 260 CONTINUE
  444. *
  445. GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
  446. IF( GAMMA.EQ.ZERO )
  447. $ GO TO 350
  448. IF( IT.NE.1 )
  449. $ BETA = GAMMA / PGAMMA
  450. T = COEF5*( EWC-THREE*EW )
  451. TC = COEF5*( EW-THREE*EWC )
  452. *
  453. CALL SSCAL( NR, BETA, WORK( ILO ), 1 )
  454. CALL SSCAL( NR, BETA, WORK( ILO+N ), 1 )
  455. *
  456. CALL SAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
  457. CALL SAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
  458. *
  459. DO 270 I = ILO, IHI
  460. WORK( I ) = WORK( I ) + TC
  461. WORK( I+N ) = WORK( I+N ) + T
  462. 270 CONTINUE
  463. *
  464. * Apply matrix to vector
  465. *
  466. DO 300 I = ILO, IHI
  467. KOUNT = 0
  468. SUM = ZERO
  469. DO 290 J = ILO, IHI
  470. IF( A( I, J ).EQ.CZERO )
  471. $ GO TO 280
  472. KOUNT = KOUNT + 1
  473. SUM = SUM + WORK( J )
  474. 280 CONTINUE
  475. IF( B( I, J ).EQ.CZERO )
  476. $ GO TO 290
  477. KOUNT = KOUNT + 1
  478. SUM = SUM + WORK( J )
  479. 290 CONTINUE
  480. WORK( I+2*N ) = REAL( KOUNT )*WORK( I+N ) + SUM
  481. 300 CONTINUE
  482. *
  483. DO 330 J = ILO, IHI
  484. KOUNT = 0
  485. SUM = ZERO
  486. DO 320 I = ILO, IHI
  487. IF( A( I, J ).EQ.CZERO )
  488. $ GO TO 310
  489. KOUNT = KOUNT + 1
  490. SUM = SUM + WORK( I+N )
  491. 310 CONTINUE
  492. IF( B( I, J ).EQ.CZERO )
  493. $ GO TO 320
  494. KOUNT = KOUNT + 1
  495. SUM = SUM + WORK( I+N )
  496. 320 CONTINUE
  497. WORK( J+3*N ) = REAL( KOUNT )*WORK( J ) + SUM
  498. 330 CONTINUE
  499. *
  500. SUM = SDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
  501. $ SDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
  502. ALPHA = GAMMA / SUM
  503. *
  504. * Determine correction to current iteration
  505. *
  506. CMAX = ZERO
  507. DO 340 I = ILO, IHI
  508. COR = ALPHA*WORK( I+N )
  509. IF( ABS( COR ).GT.CMAX )
  510. $ CMAX = ABS( COR )
  511. LSCALE( I ) = LSCALE( I ) + COR
  512. COR = ALPHA*WORK( I )
  513. IF( ABS( COR ).GT.CMAX )
  514. $ CMAX = ABS( COR )
  515. RSCALE( I ) = RSCALE( I ) + COR
  516. 340 CONTINUE
  517. IF( CMAX.LT.HALF )
  518. $ GO TO 350
  519. *
  520. CALL SAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
  521. CALL SAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
  522. *
  523. PGAMMA = GAMMA
  524. IT = IT + 1
  525. IF( IT.LE.NRP2 )
  526. $ GO TO 250
  527. *
  528. * End generalized conjugate gradient iteration
  529. *
  530. 350 CONTINUE
  531. SFMIN = SLAMCH( 'S' )
  532. SFMAX = ONE / SFMIN
  533. LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
  534. LSFMAX = INT( LOG10( SFMAX ) / BASL )
  535. DO 360 I = ILO, IHI
  536. IRAB = ICAMAX( N-ILO+1, A( I, ILO ), LDA )
  537. RAB = ABS( A( I, IRAB+ILO-1 ) )
  538. IRAB = ICAMAX( N-ILO+1, B( I, ILO ), LDB )
  539. RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
  540. LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
  541. IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
  542. IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
  543. LSCALE( I ) = SCLFAC**IR
  544. ICAB = ICAMAX( IHI, A( 1, I ), 1 )
  545. CAB = ABS( A( ICAB, I ) )
  546. ICAB = ICAMAX( IHI, B( 1, I ), 1 )
  547. CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
  548. LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
  549. JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
  550. JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
  551. RSCALE( I ) = SCLFAC**JC
  552. 360 CONTINUE
  553. *
  554. * Row scaling of matrices A and B
  555. *
  556. DO 370 I = ILO, IHI
  557. CALL CSSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
  558. CALL CSSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  559. 370 CONTINUE
  560. *
  561. * Column scaling of matrices A and B
  562. *
  563. DO 380 J = ILO, IHI
  564. CALL CSSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
  565. CALL CSSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  566. 380 CONTINUE
  567. *
  568. RETURN
  569. *
  570. * End of CGGBAL
  571. *
  572. END