You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. #ifndef CACHE_LINE_SIZE
  43. #define CACHE_LINE_SIZE 8
  44. #endif
  45. #ifndef DIVIDE_RATE
  46. #define DIVIDE_RATE 2
  47. #endif
  48. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  49. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  50. #ifndef GETRF_FACTOR
  51. #define GETRF_FACTOR 0.75
  52. #endif
  53. #undef GETRF_FACTOR
  54. #define GETRF_FACTOR 1.00
  55. static inline long FORMULA1(long M, long N, long IS, long BK, long T) {
  56. double m = (double)(M - IS - BK);
  57. double n = (double)(N - IS - BK);
  58. double b = (double)BK;
  59. double a = (double)T;
  60. return (long)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  61. }
  62. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  63. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  64. BLASLONG is, min_i;
  65. BLASLONG js, min_j;
  66. BLASLONG jjs, min_jj;
  67. BLASLONG m = args -> m;
  68. BLASLONG n = args -> n;
  69. BLASLONG k = args -> k;
  70. BLASLONG lda = args -> lda;
  71. BLASLONG off = args -> ldb;
  72. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  73. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  74. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  75. FLOAT *sbb = sb;
  76. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  77. blasint *ipiv = (blasint *)args -> c;
  78. if (range_n) {
  79. n = range_n[1] - range_n[0];
  80. c += range_n[0] * lda * COMPSIZE;
  81. d += range_n[0] * lda * COMPSIZE;
  82. }
  83. if (args -> a == NULL) {
  84. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  85. sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  86. } else {
  87. sb = (FLOAT *)args -> a;
  88. }
  89. for (js = 0; js < n; js += REAL_GEMM_R) {
  90. min_j = n - js;
  91. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  92. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  93. min_jj = js + min_j - jjs;
  94. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  95. if (GEMM_UNROLL_N <= 8) {
  96. LASWP_NCOPY(min_jj, off + 1, off + k,
  97. c + (- off + jjs * lda) * COMPSIZE, lda,
  98. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  99. } else {
  100. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  101. #ifdef COMPLEX
  102. ZERO,
  103. #endif
  104. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  105. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  106. }
  107. for (is = 0; is < k; is += GEMM_P) {
  108. min_i = k - is;
  109. if (min_i > GEMM_P) min_i = GEMM_P;
  110. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  111. #ifdef COMPLEX
  112. ZERO,
  113. #endif
  114. sb + k * is * COMPSIZE,
  115. sbb + (jjs - js) * k * COMPSIZE,
  116. c + (is + jjs * lda) * COMPSIZE, lda, is);
  117. }
  118. }
  119. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  120. for (is = 0; is < m; is += GEMM_P){
  121. min_i = m - is;
  122. if (min_i > GEMM_P) min_i = GEMM_P;
  123. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  124. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  125. #ifdef COMPLEX
  126. ZERO,
  127. #endif
  128. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  129. }
  130. }
  131. }
  132. /* Non blocking implementation */
  133. typedef struct {
  134. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  135. } job_t;
  136. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  137. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  138. #ifndef COMPLEX
  139. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  140. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  141. #else
  142. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  143. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  144. #endif
  145. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  146. job_t *job = (job_t *)args -> common;
  147. BLASLONG xxx, bufferside;
  148. FLOAT *buffer[DIVIDE_RATE];
  149. BLASLONG jjs, min_jj, div_n;
  150. BLASLONG i, current;
  151. BLASLONG is, min_i;
  152. BLASLONG m, n_from, n_to;
  153. BLASLONG k = args -> k;
  154. BLASLONG lda = args -> lda;
  155. BLASLONG off = args -> ldb;
  156. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  157. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  158. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  159. FLOAT *sbb= sb;
  160. blasint *ipiv = (blasint *)args -> c;
  161. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  162. if (args -> a == NULL) {
  163. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  164. sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  165. } else {
  166. sb = (FLOAT *)args -> a;
  167. }
  168. m = range_m[1] - range_m[0];
  169. n_from = range_n[mypos + 0];
  170. n_to = range_n[mypos + 1];
  171. a += range_m[0] * COMPSIZE;
  172. c += range_m[0] * COMPSIZE;
  173. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  174. buffer[0] = sbb;
  175. for (i = 1; i < DIVIDE_RATE; i++) {
  176. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  177. }
  178. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  179. for (i = 0; i < args -> nthreads; i++)
  180. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  181. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  182. min_jj = MIN(n_to, xxx + div_n) - jjs;
  183. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  184. if (GEMM_UNROLL_N <= 8) {
  185. LASWP_NCOPY(min_jj, off + 1, off + k,
  186. b + (- off + jjs * lda) * COMPSIZE, lda,
  187. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  188. } else {
  189. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  190. #ifdef COMPLEX
  191. ZERO,
  192. #endif
  193. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  194. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  195. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  196. }
  197. for (is = 0; is < k; is += GEMM_P) {
  198. min_i = k - is;
  199. if (min_i > GEMM_P) min_i = GEMM_P;
  200. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  201. #ifdef COMPLEX
  202. ZERO,
  203. #endif
  204. sb + k * is * COMPSIZE,
  205. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  206. b + (is + jjs * lda) * COMPSIZE, lda, is);
  207. }
  208. }
  209. for (i = 0; i < args -> nthreads; i++)
  210. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  211. }
  212. flag[mypos * CACHE_LINE_SIZE] = 0;
  213. if (m == 0) {
  214. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  215. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  216. }
  217. }
  218. for(is = 0; is < m; is += min_i){
  219. min_i = m - is;
  220. if (min_i >= GEMM_P * 2) {
  221. min_i = GEMM_P;
  222. } else
  223. if (min_i > GEMM_P) {
  224. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  225. }
  226. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  227. current = mypos;
  228. do {
  229. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  230. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  231. if ((current != mypos) && (!is)) {
  232. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  233. }
  234. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  235. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  236. c, lda, is, xxx);
  237. if (is + min_i >= m) {
  238. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  239. }
  240. }
  241. current ++;
  242. if (current >= args -> nthreads) current = 0;
  243. } while (current != mypos);
  244. }
  245. for (i = 0; i < args -> nthreads; i++) {
  246. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  247. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  248. }
  249. }
  250. return 0;
  251. }
  252. #if 1
  253. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  254. BLASLONG m, n, mn, lda, offset;
  255. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  256. blasint *ipiv, iinfo, info;
  257. int mode;
  258. blas_arg_t newarg;
  259. FLOAT *a, *sbb;
  260. FLOAT dummyalpha[2] = {ZERO, ZERO};
  261. blas_queue_t queue[MAX_CPU_NUMBER];
  262. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  263. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  264. job_t job[MAX_CPU_NUMBER];
  265. BLASLONG width, nn, mm;
  266. BLASLONG i, j, k, is, bk;
  267. BLASLONG num_cpu;
  268. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  269. #ifndef COMPLEX
  270. #ifdef XDOUBLE
  271. mode = BLAS_XDOUBLE | BLAS_REAL;
  272. #elif defined(DOUBLE)
  273. mode = BLAS_DOUBLE | BLAS_REAL;
  274. #else
  275. mode = BLAS_SINGLE | BLAS_REAL;
  276. #endif
  277. #else
  278. #ifdef XDOUBLE
  279. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  280. #elif defined(DOUBLE)
  281. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  282. #else
  283. mode = BLAS_SINGLE | BLAS_COMPLEX;
  284. #endif
  285. #endif
  286. m = args -> m;
  287. n = args -> n;
  288. a = (FLOAT *)args -> a;
  289. lda = args -> lda;
  290. ipiv = (blasint *)args -> c;
  291. offset = 0;
  292. if (range_n) {
  293. m -= range_n[0];
  294. n = range_n[1] - range_n[0];
  295. offset = range_n[0];
  296. a += range_n[0] * (lda + 1) * COMPSIZE;
  297. }
  298. if (m <= 0 || n <= 0) return 0;
  299. newarg.c = ipiv;
  300. newarg.lda = lda;
  301. newarg.common = (void *)job;
  302. info = 0;
  303. mn = MIN(m, n);
  304. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  305. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  306. if (init_bk <= GEMM_UNROLL_N) {
  307. info = GETF2(args, NULL, range_n, sa, sb, 0);
  308. return info;
  309. }
  310. next_bk = init_bk;
  311. bk = mn;
  312. if (bk > next_bk) bk = next_bk;
  313. range_n_new[0] = offset;
  314. range_n_new[1] = offset + bk;
  315. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  316. if (iinfo && !info) info = iinfo;
  317. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  318. sbb = (FLOAT *)((((long)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  319. is = 0;
  320. num_cpu = 0;
  321. while (is < mn) {
  322. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  323. if (width > mn - is - bk) width = mn - is - bk;
  324. if (width < bk) {
  325. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  326. if (next_bk > bk) next_bk = bk;
  327. width = next_bk;
  328. if (width > mn - is - bk) width = mn - is - bk;
  329. }
  330. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  331. mm = m - bk - is;
  332. nn = n - bk - is;
  333. newarg.a = sb;
  334. newarg.b = a + (is + is * lda) * COMPSIZE;
  335. newarg.d = (void *)flag;
  336. newarg.m = mm;
  337. newarg.n = nn;
  338. newarg.k = bk;
  339. newarg.ldb = is + offset;
  340. nn -= width;
  341. range_n_mine[0] = 0;
  342. range_n_mine[1] = width;
  343. range_N[0] = width;
  344. range_M[0] = 0;
  345. num_cpu = 0;
  346. while (nn > 0){
  347. if (mm >= nn) {
  348. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  349. if (nn < width) width = nn;
  350. nn -= width;
  351. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  352. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  353. if (mm < width) width = mm;
  354. if (nn <= 0) width = mm;
  355. mm -= width;
  356. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  357. } else {
  358. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  359. if (mm < width) width = mm;
  360. mm -= width;
  361. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  362. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  363. if (nn < width) width = nn;
  364. if (mm <= 0) width = nn;
  365. nn -= width;
  366. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  367. }
  368. queue[num_cpu].mode = mode;
  369. queue[num_cpu].routine = inner_advanced_thread;
  370. queue[num_cpu].args = &newarg;
  371. queue[num_cpu].range_m = &range_M[num_cpu];
  372. queue[num_cpu].range_n = &range_N[0];
  373. queue[num_cpu].sa = NULL;
  374. queue[num_cpu].sb = NULL;
  375. queue[num_cpu].next = &queue[num_cpu + 1];
  376. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  377. num_cpu ++;
  378. }
  379. newarg.nthreads = num_cpu;
  380. if (num_cpu > 0) {
  381. for (j = 0; j < num_cpu; j++) {
  382. for (i = 0; i < num_cpu; i++) {
  383. for (k = 0; k < DIVIDE_RATE; k++) {
  384. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  385. }
  386. }
  387. }
  388. }
  389. is += bk;
  390. bk = mn - is;
  391. if (bk > next_bk) bk = next_bk;
  392. range_n_new[0] = offset + is;
  393. range_n_new[1] = offset + is + bk;
  394. if (num_cpu > 0) {
  395. queue[num_cpu - 1].next = NULL;
  396. exec_blas_async(0, &queue[0]);
  397. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  398. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  399. if (iinfo && !info) info = iinfo + is;
  400. for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  401. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  402. } else {
  403. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  404. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  405. if (iinfo && !info) info = iinfo + is;
  406. }
  407. }
  408. next_bk = init_bk;
  409. is = 0;
  410. while (is < mn) {
  411. bk = mn - is;
  412. if (bk > next_bk) bk = next_bk;
  413. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  414. if (width > mn - is - bk) width = mn - is - bk;
  415. if (width < bk) {
  416. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  417. if (next_bk > bk) next_bk = bk;
  418. }
  419. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  420. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  421. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  422. is += bk;
  423. }
  424. return info;
  425. }
  426. #else
  427. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  428. BLASLONG m, n, mn, lda, offset;
  429. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  430. blasint *ipiv, iinfo, info;
  431. int mode;
  432. blas_arg_t newarg;
  433. FLOAT *a, *sbb;
  434. FLOAT dummyalpha[2] = {ZERO, ZERO};
  435. blas_queue_t queue[MAX_CPU_NUMBER];
  436. BLASLONG range[MAX_CPU_NUMBER + 1];
  437. BLASLONG width, nn, num_cpu;
  438. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  439. #ifndef COMPLEX
  440. #ifdef XDOUBLE
  441. mode = BLAS_XDOUBLE | BLAS_REAL;
  442. #elif defined(DOUBLE)
  443. mode = BLAS_DOUBLE | BLAS_REAL;
  444. #else
  445. mode = BLAS_SINGLE | BLAS_REAL;
  446. #endif
  447. #else
  448. #ifdef XDOUBLE
  449. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  450. #elif defined(DOUBLE)
  451. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  452. #else
  453. mode = BLAS_SINGLE | BLAS_COMPLEX;
  454. #endif
  455. #endif
  456. m = args -> m;
  457. n = args -> n;
  458. a = (FLOAT *)args -> a;
  459. lda = args -> lda;
  460. ipiv = (blasint *)args -> c;
  461. offset = 0;
  462. if (range_n) {
  463. m -= range_n[0];
  464. n = range_n[1] - range_n[0];
  465. offset = range_n[0];
  466. a += range_n[0] * (lda + 1) * COMPSIZE;
  467. }
  468. if (m <= 0 || n <= 0) return 0;
  469. newarg.c = ipiv;
  470. newarg.lda = lda;
  471. newarg.common = NULL;
  472. newarg.nthreads = args -> nthreads;
  473. mn = MIN(m, n);
  474. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  475. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  476. if (init_bk <= GEMM_UNROLL_N) {
  477. info = GETF2(args, NULL, range_n, sa, sb, 0);
  478. return info;
  479. }
  480. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  481. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  482. if (width > n - init_bk) width = n - init_bk;
  483. if (width < init_bk) {
  484. long temp;
  485. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  486. temp = (temp + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  487. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  488. if (temp < init_bk) init_bk = temp;
  489. }
  490. next_bk = init_bk;
  491. bk = init_bk;
  492. range_n_new[0] = offset;
  493. range_n_new[1] = offset + bk;
  494. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  495. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  496. is = 0;
  497. num_cpu = 0;
  498. sbb = (FLOAT *)((((long)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  499. while (is < mn) {
  500. width = FORMULA1(m, n, is, bk, args -> nthreads);
  501. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  502. if (width < bk) {
  503. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  504. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  505. if (next_bk > bk) next_bk = bk;
  506. #if 0
  507. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  508. #else
  509. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  510. #endif
  511. width = next_bk;
  512. }
  513. if (width > mn - is - bk) {
  514. next_bk = mn - is - bk;
  515. width = next_bk;
  516. }
  517. nn = n - bk - is;
  518. if (width > nn) width = nn;
  519. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  520. range[0] = 0;
  521. range[1] = width;
  522. num_cpu = 1;
  523. nn -= width;
  524. newarg.a = sb;
  525. newarg.b = a + (is + is * lda) * COMPSIZE;
  526. newarg.d = (void *)flag;
  527. newarg.m = m - bk - is;
  528. newarg.n = n - bk - is;
  529. newarg.k = bk;
  530. newarg.ldb = is + offset;
  531. while (nn > 0){
  532. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  533. nn -= width;
  534. if (nn < 0) width = width + nn;
  535. range[num_cpu + 1] = range[num_cpu] + width;
  536. queue[num_cpu].mode = mode;
  537. //queue[num_cpu].routine = inner_advanced_thread;
  538. queue[num_cpu].routine = (void *)inner_basic_thread;
  539. queue[num_cpu].args = &newarg;
  540. queue[num_cpu].range_m = NULL;
  541. queue[num_cpu].range_n = &range[num_cpu];
  542. queue[num_cpu].sa = NULL;
  543. queue[num_cpu].sb = NULL;
  544. queue[num_cpu].next = &queue[num_cpu + 1];
  545. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  546. num_cpu ++;
  547. }
  548. queue[num_cpu - 1].next = NULL;
  549. is += bk;
  550. bk = n - is;
  551. if (bk > next_bk) bk = next_bk;
  552. range_n_new[0] = offset + is;
  553. range_n_new[1] = offset + is + bk;
  554. if (num_cpu > 1) {
  555. exec_blas_async(1, &queue[1]);
  556. #if 0
  557. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  558. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  559. #else
  560. if (range[1] >= bk * 4) {
  561. BLASLONG myrange[2];
  562. myrange[0] = 0;
  563. myrange[1] = bk;
  564. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  565. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  566. myrange[0] = bk;
  567. myrange[1] = range[1];
  568. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  569. } else {
  570. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  571. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  572. }
  573. #endif
  574. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  575. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  576. } else {
  577. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  578. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  579. }
  580. if (iinfo && !info) info = iinfo + is;
  581. }
  582. next_bk = init_bk;
  583. bk = init_bk;
  584. is = 0;
  585. while (is < mn) {
  586. bk = mn - is;
  587. if (bk > next_bk) bk = next_bk;
  588. width = FORMULA1(m, n, is, bk, args -> nthreads);
  589. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  590. if (width < bk) {
  591. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  592. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  593. if (next_bk > bk) next_bk = bk;
  594. #if 0
  595. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  596. #else
  597. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  598. #endif
  599. }
  600. if (width > mn - is - bk) {
  601. next_bk = mn - is - bk;
  602. width = next_bk;
  603. }
  604. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  605. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  606. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  607. is += bk;
  608. }
  609. return info;
  610. }
  611. #endif