You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlangb.f 6.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. *> \brief \b DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANGB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM
  26. * INTEGER KL, KU, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION AB( LDAB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLANGB returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of an
  40. *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
  41. *> \endverbatim
  42. *>
  43. *> \return DLANGB
  44. *> \verbatim
  45. *>
  46. *> DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in DLANGB as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The order of the matrix A. N >= 0. When N = 0, DLANGB is
  74. *> set to zero.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] KL
  78. *> \verbatim
  79. *> KL is INTEGER
  80. *> The number of sub-diagonals of the matrix A. KL >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] KU
  84. *> \verbatim
  85. *> KU is INTEGER
  86. *> The number of super-diagonals of the matrix A. KU >= 0.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] AB
  90. *> \verbatim
  91. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  92. *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
  93. *> column of A is stored in the j-th column of the array AB as
  94. *> follows:
  95. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDAB
  99. *> \verbatim
  100. *> LDAB is INTEGER
  101. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] WORK
  105. *> \verbatim
  106. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  107. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  108. *> referenced.
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \date December 2016
  120. *
  121. *> \ingroup doubleGBauxiliary
  122. *
  123. * =====================================================================
  124. DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
  125. $ WORK )
  126. *
  127. * -- LAPACK auxiliary routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. IMPLICIT NONE
  133. * .. Scalar Arguments ..
  134. CHARACTER NORM
  135. INTEGER KL, KU, LDAB, N
  136. * ..
  137. * .. Array Arguments ..
  138. DOUBLE PRECISION AB( LDAB, * ), WORK( * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ONE, ZERO
  145. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  146. * ..
  147. * .. Local Scalars ..
  148. INTEGER I, J, K, L
  149. DOUBLE PRECISION SUM, VALUE, TEMP
  150. * ..
  151. * .. Local Arrays ..
  152. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME, DISNAN
  156. EXTERNAL LSAME, DISNAN
  157. * ..
  158. * .. External Subroutines ..
  159. EXTERNAL DLASSQ, DCOMBSSQ
  160. * ..
  161. * .. Intrinsic Functions ..
  162. INTRINSIC ABS, MAX, MIN, SQRT
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. IF( N.EQ.0 ) THEN
  167. VALUE = ZERO
  168. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  169. *
  170. * Find max(abs(A(i,j))).
  171. *
  172. VALUE = ZERO
  173. DO 20 J = 1, N
  174. DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  175. TEMP = ABS( AB( I, J ) )
  176. IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
  177. 10 CONTINUE
  178. 20 CONTINUE
  179. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  180. *
  181. * Find norm1(A).
  182. *
  183. VALUE = ZERO
  184. DO 40 J = 1, N
  185. SUM = ZERO
  186. DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  187. SUM = SUM + ABS( AB( I, J ) )
  188. 30 CONTINUE
  189. IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  190. 40 CONTINUE
  191. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  192. *
  193. * Find normI(A).
  194. *
  195. DO 50 I = 1, N
  196. WORK( I ) = ZERO
  197. 50 CONTINUE
  198. DO 70 J = 1, N
  199. K = KU + 1 - J
  200. DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
  201. WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
  202. 60 CONTINUE
  203. 70 CONTINUE
  204. VALUE = ZERO
  205. DO 80 I = 1, N
  206. TEMP = WORK( I )
  207. IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
  208. 80 CONTINUE
  209. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  210. *
  211. * Find normF(A).
  212. * SSQ(1) is scale
  213. * SSQ(2) is sum-of-squares
  214. * For better accuracy, sum each column separately.
  215. *
  216. SSQ( 1 ) = ZERO
  217. SSQ( 2 ) = ONE
  218. DO 90 J = 1, N
  219. L = MAX( 1, J-KU )
  220. K = KU + 1 - J + L
  221. COLSSQ( 1 ) = ZERO
  222. COLSSQ( 2 ) = ONE
  223. CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1,
  224. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  225. CALL DCOMBSSQ( SSQ, COLSSQ )
  226. 90 CONTINUE
  227. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  228. END IF
  229. *
  230. DLANGB = VALUE
  231. RETURN
  232. *
  233. * End of DLANGB
  234. *
  235. END