You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cptcon.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b CPTCON
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPTCON + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptcon.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptcon.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptcon.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * REAL ANORM, RCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL D( * ), RWORK( * )
  29. * COMPLEX E( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CPTCON computes the reciprocal of the condition number (in the
  39. *> 1-norm) of a complex Hermitian positive definite tridiagonal matrix
  40. *> using the factorization A = L*D*L**H or A = U**H*D*U computed by
  41. *> CPTTRF.
  42. *>
  43. *> Norm(inv(A)) is computed by a direct method, and the reciprocal of
  44. *> the condition number is computed as
  45. *> RCOND = 1 / (ANORM * norm(inv(A))).
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The order of the matrix A. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] D
  58. *> \verbatim
  59. *> D is REAL array, dimension (N)
  60. *> The n diagonal elements of the diagonal matrix D from the
  61. *> factorization of A, as computed by CPTTRF.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] E
  65. *> \verbatim
  66. *> E is COMPLEX array, dimension (N-1)
  67. *> The (n-1) off-diagonal elements of the unit bidiagonal factor
  68. *> U or L from the factorization of A, as computed by CPTTRF.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] ANORM
  72. *> \verbatim
  73. *> ANORM is REAL
  74. *> The 1-norm of the original matrix A.
  75. *> \endverbatim
  76. *>
  77. *> \param[out] RCOND
  78. *> \verbatim
  79. *> RCOND is REAL
  80. *> The reciprocal of the condition number of the matrix A,
  81. *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
  82. *> 1-norm of inv(A) computed in this routine.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] RWORK
  86. *> \verbatim
  87. *> RWORK is REAL array, dimension (N)
  88. *> \endverbatim
  89. *>
  90. *> \param[out] INFO
  91. *> \verbatim
  92. *> INFO is INTEGER
  93. *> = 0: successful exit
  94. *> < 0: if INFO = -i, the i-th argument had an illegal value
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \date December 2016
  106. *
  107. *> \ingroup complexPTcomputational
  108. *
  109. *> \par Further Details:
  110. * =====================
  111. *>
  112. *> \verbatim
  113. *>
  114. *> The method used is described in Nicholas J. Higham, "Efficient
  115. *> Algorithms for Computing the Condition Number of a Tridiagonal
  116. *> Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
  117. *> \endverbatim
  118. *>
  119. * =====================================================================
  120. SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
  121. *
  122. * -- LAPACK computational routine (version 3.7.0) --
  123. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  124. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  125. * December 2016
  126. *
  127. * .. Scalar Arguments ..
  128. INTEGER INFO, N
  129. REAL ANORM, RCOND
  130. * ..
  131. * .. Array Arguments ..
  132. REAL D( * ), RWORK( * )
  133. COMPLEX E( * )
  134. * ..
  135. *
  136. * =====================================================================
  137. *
  138. * .. Parameters ..
  139. REAL ONE, ZERO
  140. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  141. * ..
  142. * .. Local Scalars ..
  143. INTEGER I, IX
  144. REAL AINVNM
  145. * ..
  146. * .. External Functions ..
  147. INTEGER ISAMAX
  148. EXTERNAL ISAMAX
  149. * ..
  150. * .. External Subroutines ..
  151. EXTERNAL XERBLA
  152. * ..
  153. * .. Intrinsic Functions ..
  154. INTRINSIC ABS
  155. * ..
  156. * .. Executable Statements ..
  157. *
  158. * Test the input arguments.
  159. *
  160. INFO = 0
  161. IF( N.LT.0 ) THEN
  162. INFO = -1
  163. ELSE IF( ANORM.LT.ZERO ) THEN
  164. INFO = -4
  165. END IF
  166. IF( INFO.NE.0 ) THEN
  167. CALL XERBLA( 'CPTCON', -INFO )
  168. RETURN
  169. END IF
  170. *
  171. * Quick return if possible
  172. *
  173. RCOND = ZERO
  174. IF( N.EQ.0 ) THEN
  175. RCOND = ONE
  176. RETURN
  177. ELSE IF( ANORM.EQ.ZERO ) THEN
  178. RETURN
  179. END IF
  180. *
  181. * Check that D(1:N) is positive.
  182. *
  183. DO 10 I = 1, N
  184. IF( D( I ).LE.ZERO )
  185. $ RETURN
  186. 10 CONTINUE
  187. *
  188. * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
  189. *
  190. * m(i,j) = abs(A(i,j)), i = j,
  191. * m(i,j) = -abs(A(i,j)), i .ne. j,
  192. *
  193. * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**H.
  194. *
  195. * Solve M(L) * x = e.
  196. *
  197. RWORK( 1 ) = ONE
  198. DO 20 I = 2, N
  199. RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
  200. 20 CONTINUE
  201. *
  202. * Solve D * M(L)**H * x = b.
  203. *
  204. RWORK( N ) = RWORK( N ) / D( N )
  205. DO 30 I = N - 1, 1, -1
  206. RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
  207. 30 CONTINUE
  208. *
  209. * Compute AINVNM = max(x(i)), 1<=i<=n.
  210. *
  211. IX = ISAMAX( N, RWORK, 1 )
  212. AINVNM = ABS( RWORK( IX ) )
  213. *
  214. * Compute the reciprocal condition number.
  215. *
  216. IF( AINVNM.NE.ZERO )
  217. $ RCOND = ( ONE / AINVNM ) / ANORM
  218. *
  219. RETURN
  220. *
  221. * End of CPTCON
  222. *
  223. END