You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sqrt15.f 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. *> \brief \b SQRT15
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
  12. * RANK, NORMA, NORMB, ISEED, WORK, LWORK )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
  16. * REAL NORMA, NORMB
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER ISEED( 4 )
  20. * REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SQRT15 generates a matrix with full or deficient rank and of various
  30. *> norms.
  31. *> \endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. *> \param[in] SCALE
  37. *> \verbatim
  38. *> SCALE is INTEGER
  39. *> SCALE = 1: normally scaled matrix
  40. *> SCALE = 2: matrix scaled up
  41. *> SCALE = 3: matrix scaled down
  42. *> \endverbatim
  43. *>
  44. *> \param[in] RKSEL
  45. *> \verbatim
  46. *> RKSEL is INTEGER
  47. *> RKSEL = 1: full rank matrix
  48. *> RKSEL = 2: rank-deficient matrix
  49. *> \endverbatim
  50. *>
  51. *> \param[in] M
  52. *> \verbatim
  53. *> M is INTEGER
  54. *> The number of rows of the matrix A.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The number of columns of A.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of columns of B.
  67. *> \endverbatim
  68. *>
  69. *> \param[out] A
  70. *> \verbatim
  71. *> A is REAL array, dimension (LDA,N)
  72. *> The M-by-N matrix A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A.
  79. *> \endverbatim
  80. *>
  81. *> \param[out] B
  82. *> \verbatim
  83. *> B is REAL array, dimension (LDB, NRHS)
  84. *> A matrix that is in the range space of matrix A.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDB
  88. *> \verbatim
  89. *> LDB is INTEGER
  90. *> The leading dimension of the array B.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] S
  94. *> \verbatim
  95. *> S is REAL array, dimension MIN(M,N)
  96. *> Singular values of A.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] RANK
  100. *> \verbatim
  101. *> RANK is INTEGER
  102. *> number of nonzero singular values of A.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] NORMA
  106. *> \verbatim
  107. *> NORMA is REAL
  108. *> one-norm of A.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] NORMB
  112. *> \verbatim
  113. *> NORMB is REAL
  114. *> one-norm of B.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] ISEED
  118. *> \verbatim
  119. *> ISEED is integer array, dimension (4)
  120. *> seed for random number generator.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] WORK
  124. *> \verbatim
  125. *> WORK is REAL array, dimension (LWORK)
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LWORK
  129. *> \verbatim
  130. *> LWORK is INTEGER
  131. *> length of work space required.
  132. *> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
  133. *> \endverbatim
  134. *
  135. * Authors:
  136. * ========
  137. *
  138. *> \author Univ. of Tennessee
  139. *> \author Univ. of California Berkeley
  140. *> \author Univ. of Colorado Denver
  141. *> \author NAG Ltd.
  142. *
  143. *> \ingroup single_lin
  144. *
  145. * =====================================================================
  146. SUBROUTINE SQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
  147. $ RANK, NORMA, NORMB, ISEED, WORK, LWORK )
  148. *
  149. * -- LAPACK test routine --
  150. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  151. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  152. *
  153. * .. Scalar Arguments ..
  154. INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
  155. REAL NORMA, NORMB
  156. * ..
  157. * .. Array Arguments ..
  158. INTEGER ISEED( 4 )
  159. REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK )
  160. * ..
  161. *
  162. * =====================================================================
  163. *
  164. * .. Parameters ..
  165. REAL ZERO, ONE, TWO, SVMIN
  166. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
  167. $ SVMIN = 0.1E0 )
  168. * ..
  169. * .. Local Scalars ..
  170. INTEGER INFO, J, MN
  171. REAL BIGNUM, EPS, SMLNUM, TEMP
  172. * ..
  173. * .. Local Arrays ..
  174. REAL DUMMY( 1 )
  175. * ..
  176. * .. External Functions ..
  177. REAL SASUM, SLAMCH, SLANGE, SLARND, SNRM2
  178. EXTERNAL SASUM, SLAMCH, SLANGE, SLARND, SNRM2
  179. * ..
  180. * .. External Subroutines ..
  181. EXTERNAL SGEMM, SLAORD, SLARF, SLARNV, SLAROR, SLASCL,
  182. $ SLASET, SSCAL, XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC ABS, MAX, MIN
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. MN = MIN( M, N )
  190. IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
  191. CALL XERBLA( 'SQRT15', 16 )
  192. RETURN
  193. END IF
  194. *
  195. SMLNUM = SLAMCH( 'Safe minimum' )
  196. BIGNUM = ONE / SMLNUM
  197. EPS = SLAMCH( 'Epsilon' )
  198. SMLNUM = ( SMLNUM / EPS ) / EPS
  199. BIGNUM = ONE / SMLNUM
  200. *
  201. * Determine rank and (unscaled) singular values
  202. *
  203. IF( RKSEL.EQ.1 ) THEN
  204. RANK = MN
  205. ELSE IF( RKSEL.EQ.2 ) THEN
  206. RANK = ( 3*MN ) / 4
  207. DO 10 J = RANK + 1, MN
  208. S( J ) = ZERO
  209. 10 CONTINUE
  210. ELSE
  211. CALL XERBLA( 'SQRT15', 2 )
  212. END IF
  213. *
  214. IF( RANK.GT.0 ) THEN
  215. *
  216. * Nontrivial case
  217. *
  218. S( 1 ) = ONE
  219. DO 30 J = 2, RANK
  220. 20 CONTINUE
  221. TEMP = SLARND( 1, ISEED )
  222. IF( TEMP.GT.SVMIN ) THEN
  223. S( J ) = ABS( TEMP )
  224. ELSE
  225. GO TO 20
  226. END IF
  227. 30 CONTINUE
  228. CALL SLAORD( 'Decreasing', RANK, S, 1 )
  229. *
  230. * Generate 'rank' columns of a random orthogonal matrix in A
  231. *
  232. CALL SLARNV( 2, ISEED, M, WORK )
  233. CALL SSCAL( M, ONE / SNRM2( M, WORK, 1 ), WORK, 1 )
  234. CALL SLASET( 'Full', M, RANK, ZERO, ONE, A, LDA )
  235. CALL SLARF( 'Left', M, RANK, WORK, 1, TWO, A, LDA,
  236. $ WORK( M+1 ) )
  237. *
  238. * workspace used: m+mn
  239. *
  240. * Generate consistent rhs in the range space of A
  241. *
  242. CALL SLARNV( 2, ISEED, RANK*NRHS, WORK )
  243. CALL SGEMM( 'No transpose', 'No transpose', M, NRHS, RANK, ONE,
  244. $ A, LDA, WORK, RANK, ZERO, B, LDB )
  245. *
  246. * work space used: <= mn *nrhs
  247. *
  248. * generate (unscaled) matrix A
  249. *
  250. DO 40 J = 1, RANK
  251. CALL SSCAL( M, S( J ), A( 1, J ), 1 )
  252. 40 CONTINUE
  253. IF( RANK.LT.N )
  254. $ CALL SLASET( 'Full', M, N-RANK, ZERO, ZERO, A( 1, RANK+1 ),
  255. $ LDA )
  256. CALL SLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
  257. $ WORK, INFO )
  258. *
  259. ELSE
  260. *
  261. * work space used 2*n+m
  262. *
  263. * Generate null matrix and rhs
  264. *
  265. DO 50 J = 1, MN
  266. S( J ) = ZERO
  267. 50 CONTINUE
  268. CALL SLASET( 'Full', M, N, ZERO, ZERO, A, LDA )
  269. CALL SLASET( 'Full', M, NRHS, ZERO, ZERO, B, LDB )
  270. *
  271. END IF
  272. *
  273. * Scale the matrix
  274. *
  275. IF( SCALE.NE.1 ) THEN
  276. NORMA = SLANGE( 'Max', M, N, A, LDA, DUMMY )
  277. IF( NORMA.NE.ZERO ) THEN
  278. IF( SCALE.EQ.2 ) THEN
  279. *
  280. * matrix scaled up
  281. *
  282. CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
  283. $ LDA, INFO )
  284. CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
  285. $ MN, INFO )
  286. CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
  287. $ LDB, INFO )
  288. ELSE IF( SCALE.EQ.3 ) THEN
  289. *
  290. * matrix scaled down
  291. *
  292. CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
  293. $ LDA, INFO )
  294. CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
  295. $ MN, INFO )
  296. CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
  297. $ LDB, INFO )
  298. ELSE
  299. CALL XERBLA( 'SQRT15', 1 )
  300. RETURN
  301. END IF
  302. END IF
  303. END IF
  304. *
  305. NORMA = SASUM( MN, S, 1 )
  306. NORMB = SLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
  307. *
  308. RETURN
  309. *
  310. * End of SQRT15
  311. *
  312. END