You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctpt01.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. *> \brief \b CTPT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, RWORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER DIAG, UPLO
  15. * INTEGER N
  16. * REAL RCOND, RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL RWORK( * )
  20. * COMPLEX AINVP( * ), AP( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CTPT01 computes the residual for a triangular matrix A times its
  30. *> inverse when A is stored in packed format:
  31. *> RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
  32. *> where EPS is the machine epsilon.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> Specifies whether the matrix A is upper or lower triangular.
  42. *> = 'U': Upper triangular
  43. *> = 'L': Lower triangular
  44. *> \endverbatim
  45. *>
  46. *> \param[in] DIAG
  47. *> \verbatim
  48. *> DIAG is CHARACTER*1
  49. *> Specifies whether or not the matrix A is unit triangular.
  50. *> = 'N': Non-unit triangular
  51. *> = 'U': Unit triangular
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The order of the matrix A. N >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] AP
  61. *> \verbatim
  62. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  63. *> The original upper or lower triangular matrix A, packed
  64. *> columnwise in a linear array. The j-th column of A is stored
  65. *> in the array AP as follows:
  66. *> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
  67. *> if UPLO = 'L',
  68. *> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] AINVP
  72. *> \verbatim
  73. *> AINVP is COMPLEX array, dimension (N*(N+1)/2)
  74. *> On entry, the (triangular) inverse of the matrix A, packed
  75. *> columnwise in a linear array as in AP.
  76. *> On exit, the contents of AINVP are destroyed.
  77. *> \endverbatim
  78. *>
  79. *> \param[out] RCOND
  80. *> \verbatim
  81. *> RCOND is REAL
  82. *> The reciprocal condition number of A, computed as
  83. *> 1/(norm(A) * norm(AINV)).
  84. *> \endverbatim
  85. *>
  86. *> \param[out] RWORK
  87. *> \verbatim
  88. *> RWORK is REAL array, dimension (N)
  89. *> \endverbatim
  90. *>
  91. *> \param[out] RESID
  92. *> \verbatim
  93. *> RESID is REAL
  94. *> norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup complex_lin
  106. *
  107. * =====================================================================
  108. SUBROUTINE CTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, RWORK, RESID )
  109. *
  110. * -- LAPACK test routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER DIAG, UPLO
  116. INTEGER N
  117. REAL RCOND, RESID
  118. * ..
  119. * .. Array Arguments ..
  120. REAL RWORK( * )
  121. COMPLEX AINVP( * ), AP( * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Parameters ..
  127. REAL ZERO, ONE
  128. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  129. * ..
  130. * .. Local Scalars ..
  131. LOGICAL UNITD
  132. INTEGER J, JC
  133. REAL AINVNM, ANORM, EPS
  134. * ..
  135. * .. External Functions ..
  136. LOGICAL LSAME
  137. REAL CLANTP, SLAMCH
  138. EXTERNAL LSAME, CLANTP, SLAMCH
  139. * ..
  140. * .. External Subroutines ..
  141. EXTERNAL CTPMV
  142. * ..
  143. * .. Intrinsic Functions ..
  144. INTRINSIC REAL
  145. * ..
  146. * .. Executable Statements ..
  147. *
  148. * Quick exit if N = 0.
  149. *
  150. IF( N.LE.0 ) THEN
  151. RCOND = ONE
  152. RESID = ZERO
  153. RETURN
  154. END IF
  155. *
  156. * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
  157. *
  158. EPS = SLAMCH( 'Epsilon' )
  159. ANORM = CLANTP( '1', UPLO, DIAG, N, AP, RWORK )
  160. AINVNM = CLANTP( '1', UPLO, DIAG, N, AINVP, RWORK )
  161. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  162. RCOND = ZERO
  163. RESID = ONE / EPS
  164. RETURN
  165. END IF
  166. RCOND = ( ONE / ANORM ) / AINVNM
  167. *
  168. * Compute A * AINV, overwriting AINV.
  169. *
  170. UNITD = LSAME( DIAG, 'U' )
  171. IF( LSAME( UPLO, 'U' ) ) THEN
  172. JC = 1
  173. DO 10 J = 1, N
  174. IF( UNITD )
  175. $ AINVP( JC+J-1 ) = ONE
  176. *
  177. * Form the j-th column of A*AINV.
  178. *
  179. CALL CTPMV( 'Upper', 'No transpose', DIAG, J, AP,
  180. $ AINVP( JC ), 1 )
  181. *
  182. * Subtract 1 from the diagonal to form A*AINV - I.
  183. *
  184. AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE
  185. JC = JC + J
  186. 10 CONTINUE
  187. ELSE
  188. JC = 1
  189. DO 20 J = 1, N
  190. IF( UNITD )
  191. $ AINVP( JC ) = ONE
  192. *
  193. * Form the j-th column of A*AINV.
  194. *
  195. CALL CTPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ),
  196. $ AINVP( JC ), 1 )
  197. *
  198. * Subtract 1 from the diagonal to form A*AINV - I.
  199. *
  200. AINVP( JC ) = AINVP( JC ) - ONE
  201. JC = JC + N - J + 1
  202. 20 CONTINUE
  203. END IF
  204. *
  205. * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
  206. *
  207. RESID = CLANTP( '1', UPLO, 'Non-unit', N, AINVP, RWORK )
  208. *
  209. RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
  210. *
  211. RETURN
  212. *
  213. * End of CTPT01
  214. *
  215. END