You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chpt01.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. *> \brief \b CHPT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER LDC, N
  16. * REAL RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * REAL RWORK( * )
  21. * COMPLEX A( * ), AFAC( * ), C( LDC, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CHPT01 reconstructs a Hermitian indefinite packed matrix A from its
  31. *> block L*D*L' or U*D*U' factorization and computes the residual
  32. *> norm( C - A ) / ( N * norm(A) * EPS ),
  33. *> where C is the reconstructed matrix, EPS is the machine epsilon,
  34. *> L' is the conjugate transpose of L, and U' is the conjugate transpose
  35. *> of U.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> Specifies whether the upper or lower triangular part of the
  45. *> Hermitian matrix A is stored:
  46. *> = 'U': Upper triangular
  47. *> = 'L': Lower triangular
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The number of rows and columns of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is COMPLEX array, dimension (N*(N+1)/2)
  59. *> The original Hermitian matrix A, stored as a packed
  60. *> triangular matrix.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] AFAC
  64. *> \verbatim
  65. *> AFAC is COMPLEX array, dimension (N*(N+1)/2)
  66. *> The factored form of the matrix A, stored as a packed
  67. *> triangular matrix. AFAC contains the block diagonal matrix D
  68. *> and the multipliers used to obtain the factor L or U from the
  69. *> block L*D*L' or U*D*U' factorization as computed by CHPTRF.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] IPIV
  73. *> \verbatim
  74. *> IPIV is INTEGER array, dimension (N)
  75. *> The pivot indices from CHPTRF.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] C
  79. *> \verbatim
  80. *> C is COMPLEX array, dimension (LDC,N)
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDC
  84. *> \verbatim
  85. *> LDC is INTEGER
  86. *> The leading dimension of the array C. LDC >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] RWORK
  90. *> \verbatim
  91. *> RWORK is REAL array, dimension (N)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] RESID
  95. *> \verbatim
  96. *> RESID is REAL
  97. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  98. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \ingroup complex_lin
  110. *
  111. * =====================================================================
  112. SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
  113. *
  114. * -- LAPACK test routine --
  115. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  116. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117. *
  118. * .. Scalar Arguments ..
  119. CHARACTER UPLO
  120. INTEGER LDC, N
  121. REAL RESID
  122. * ..
  123. * .. Array Arguments ..
  124. INTEGER IPIV( * )
  125. REAL RWORK( * )
  126. COMPLEX A( * ), AFAC( * ), C( LDC, * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. REAL ZERO, ONE
  133. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  134. COMPLEX CZERO, CONE
  135. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  136. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  137. * ..
  138. * .. Local Scalars ..
  139. INTEGER I, INFO, J, JC
  140. REAL ANORM, EPS
  141. * ..
  142. * .. External Functions ..
  143. LOGICAL LSAME
  144. REAL CLANHE, CLANHP, SLAMCH
  145. EXTERNAL LSAME, CLANHE, CLANHP, SLAMCH
  146. * ..
  147. * .. External Subroutines ..
  148. EXTERNAL CLAVHP, CLASET
  149. * ..
  150. * .. Intrinsic Functions ..
  151. INTRINSIC AIMAG, REAL
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. * Quick exit if N = 0.
  156. *
  157. IF( N.LE.0 ) THEN
  158. RESID = ZERO
  159. RETURN
  160. END IF
  161. *
  162. * Determine EPS and the norm of A.
  163. *
  164. EPS = SLAMCH( 'Epsilon' )
  165. ANORM = CLANHP( '1', UPLO, N, A, RWORK )
  166. *
  167. * Check the imaginary parts of the diagonal elements and return with
  168. * an error code if any are nonzero.
  169. *
  170. JC = 1
  171. IF( LSAME( UPLO, 'U' ) ) THEN
  172. DO 10 J = 1, N
  173. IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
  174. RESID = ONE / EPS
  175. RETURN
  176. END IF
  177. JC = JC + J + 1
  178. 10 CONTINUE
  179. ELSE
  180. DO 20 J = 1, N
  181. IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
  182. RESID = ONE / EPS
  183. RETURN
  184. END IF
  185. JC = JC + N - J + 1
  186. 20 CONTINUE
  187. END IF
  188. *
  189. * Initialize C to the identity matrix.
  190. *
  191. CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
  192. *
  193. * Call CLAVHP to form the product D * U' (or D * L' ).
  194. *
  195. CALL CLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
  196. $ LDC, INFO )
  197. *
  198. * Call CLAVHP again to multiply by U ( or L ).
  199. *
  200. CALL CLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
  201. $ LDC, INFO )
  202. *
  203. * Compute the difference C - A .
  204. *
  205. IF( LSAME( UPLO, 'U' ) ) THEN
  206. JC = 0
  207. DO 40 J = 1, N
  208. DO 30 I = 1, J - 1
  209. C( I, J ) = C( I, J ) - A( JC+I )
  210. 30 CONTINUE
  211. C( J, J ) = C( J, J ) - REAL( A( JC+J ) )
  212. JC = JC + J
  213. 40 CONTINUE
  214. ELSE
  215. JC = 1
  216. DO 60 J = 1, N
  217. C( J, J ) = C( J, J ) - REAL( A( JC ) )
  218. DO 50 I = J + 1, N
  219. C( I, J ) = C( I, J ) - A( JC+I-J )
  220. 50 CONTINUE
  221. JC = JC + N - J + 1
  222. 60 CONTINUE
  223. END IF
  224. *
  225. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  226. *
  227. RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
  228. *
  229. IF( ANORM.LE.ZERO ) THEN
  230. IF( RESID.NE.ZERO )
  231. $ RESID = ONE / EPS
  232. ELSE
  233. RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
  234. END IF
  235. *
  236. RETURN
  237. *
  238. * End of CHPT01
  239. *
  240. END