You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zget52.f 8.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. *> \brief \b ZGET52
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
  12. * WORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL LEFT
  16. * INTEGER LDA, LDB, LDE, N
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION RESULT( 2 ), RWORK( * )
  20. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  21. * $ BETA( * ), E( LDE, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZGET52 does an eigenvector check for the generalized eigenvalue
  31. *> problem.
  32. *>
  33. *> The basic test for right eigenvectors is:
  34. *>
  35. *> | b(i) A E(i) - a(i) B E(i) |
  36. *> RESULT(1) = max -------------------------------
  37. *> i n ulp max( |b(i) A|, |a(i) B| )
  38. *>
  39. *> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized
  40. *> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
  41. *> generalized eigenvalue of m A - B.
  42. *>
  43. *> H H _ _
  44. *> For left eigenvectors, A , B , a, and b are used.
  45. *>
  46. *> ZGET52 also tests the normalization of E. Each eigenvector is
  47. *> supposed to be normalized so that the maximum "absolute value"
  48. *> of its elements is 1, where in this case, "absolute value"
  49. *> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
  50. *> maximum "absolute value" norm of a vector v M(v).
  51. *> If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
  52. *> vector. The normalization test is:
  53. *>
  54. *> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp )
  55. *> eigenvectors v(i)
  56. *>
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] LEFT
  63. *> \verbatim
  64. *> LEFT is LOGICAL
  65. *> =.TRUE.: The eigenvectors in the columns of E are assumed
  66. *> to be *left* eigenvectors.
  67. *> =.FALSE.: The eigenvectors in the columns of E are assumed
  68. *> to be *right* eigenvectors.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The size of the matrices. If it is zero, ZGET52 does
  75. *> nothing. It must be at least zero.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] A
  79. *> \verbatim
  80. *> A is COMPLEX*16 array, dimension (LDA, N)
  81. *> The matrix A.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of A. It must be at least 1
  88. *> and at least N.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] B
  92. *> \verbatim
  93. *> B is COMPLEX*16 array, dimension (LDB, N)
  94. *> The matrix B.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDB
  98. *> \verbatim
  99. *> LDB is INTEGER
  100. *> The leading dimension of B. It must be at least 1
  101. *> and at least N.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] E
  105. *> \verbatim
  106. *> E is COMPLEX*16 array, dimension (LDE, N)
  107. *> The matrix of eigenvectors. It must be O( 1 ).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDE
  111. *> \verbatim
  112. *> LDE is INTEGER
  113. *> The leading dimension of E. It must be at least 1 and at
  114. *> least N.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] ALPHA
  118. *> \verbatim
  119. *> ALPHA is COMPLEX*16 array, dimension (N)
  120. *> The values a(i) as described above, which, along with b(i),
  121. *> define the generalized eigenvalues.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] BETA
  125. *> \verbatim
  126. *> BETA is COMPLEX*16 array, dimension (N)
  127. *> The values b(i) as described above, which, along with a(i),
  128. *> define the generalized eigenvalues.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] WORK
  132. *> \verbatim
  133. *> WORK is COMPLEX*16 array, dimension (N**2)
  134. *> \endverbatim
  135. *>
  136. *> \param[out] RWORK
  137. *> \verbatim
  138. *> RWORK is DOUBLE PRECISION array, dimension (N)
  139. *> \endverbatim
  140. *>
  141. *> \param[out] RESULT
  142. *> \verbatim
  143. *> RESULT is DOUBLE PRECISION array, dimension (2)
  144. *> The values computed by the test described above. If A E or
  145. *> B E is likely to overflow, then RESULT(1:2) is set to
  146. *> 10 / ulp.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \ingroup complex16_eig
  158. *
  159. * =====================================================================
  160. SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
  161. $ WORK, RWORK, RESULT )
  162. *
  163. * -- LAPACK test routine --
  164. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  165. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166. *
  167. * .. Scalar Arguments ..
  168. LOGICAL LEFT
  169. INTEGER LDA, LDB, LDE, N
  170. * ..
  171. * .. Array Arguments ..
  172. DOUBLE PRECISION RESULT( 2 ), RWORK( * )
  173. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  174. $ BETA( * ), E( LDE, * ), WORK( * )
  175. * ..
  176. *
  177. * =====================================================================
  178. *
  179. * .. Parameters ..
  180. DOUBLE PRECISION ZERO, ONE
  181. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  182. COMPLEX*16 CZERO, CONE
  183. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  184. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  185. * ..
  186. * .. Local Scalars ..
  187. CHARACTER NORMAB, TRANS
  188. INTEGER J, JVEC
  189. DOUBLE PRECISION ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
  190. $ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
  191. $ ULP
  192. COMPLEX*16 ACOEFF, ALPHAI, BCOEFF, BETAI, X
  193. * ..
  194. * .. External Functions ..
  195. DOUBLE PRECISION DLAMCH, ZLANGE
  196. EXTERNAL DLAMCH, ZLANGE
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL ZGEMV
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX
  203. * ..
  204. * .. Statement Functions ..
  205. DOUBLE PRECISION ABS1
  206. * ..
  207. * .. Statement Function definitions ..
  208. ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  209. * ..
  210. * .. Executable Statements ..
  211. *
  212. RESULT( 1 ) = ZERO
  213. RESULT( 2 ) = ZERO
  214. IF( N.LE.0 )
  215. $ RETURN
  216. *
  217. SAFMIN = DLAMCH( 'Safe minimum' )
  218. SAFMAX = ONE / SAFMIN
  219. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  220. *
  221. IF( LEFT ) THEN
  222. TRANS = 'C'
  223. NORMAB = 'I'
  224. ELSE
  225. TRANS = 'N'
  226. NORMAB = 'O'
  227. END IF
  228. *
  229. * Norm of A, B, and E:
  230. *
  231. ANORM = MAX( ZLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
  232. BNORM = MAX( ZLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
  233. ENORM = MAX( ZLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
  234. ALFMAX = SAFMAX / MAX( ONE, BNORM )
  235. BETMAX = SAFMAX / MAX( ONE, ANORM )
  236. *
  237. * Compute error matrix.
  238. * Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| )
  239. *
  240. DO 10 JVEC = 1, N
  241. ALPHAI = ALPHA( JVEC )
  242. BETAI = BETA( JVEC )
  243. ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
  244. IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
  245. $ ABMAX.LT.ONE ) THEN
  246. SCALE = ONE / MAX( ABMAX, SAFMIN )
  247. ALPHAI = SCALE*ALPHAI
  248. BETAI = SCALE*BETAI
  249. END IF
  250. SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
  251. $ SAFMIN )
  252. ACOEFF = SCALE*BETAI
  253. BCOEFF = SCALE*ALPHAI
  254. IF( LEFT ) THEN
  255. ACOEFF = DCONJG( ACOEFF )
  256. BCOEFF = DCONJG( BCOEFF )
  257. END IF
  258. CALL ZGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
  259. $ CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
  260. CALL ZGEMV( TRANS, N, N, -BCOEFF, B, LDB, E( 1, JVEC ), 1,
  261. $ CONE, WORK( N*( JVEC-1 )+1 ), 1 )
  262. 10 CONTINUE
  263. *
  264. ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
  265. *
  266. * Compute RESULT(1)
  267. *
  268. RESULT( 1 ) = ERRNRM / ULP
  269. *
  270. * Normalization of E:
  271. *
  272. ENRMER = ZERO
  273. DO 30 JVEC = 1, N
  274. TEMP1 = ZERO
  275. DO 20 J = 1, N
  276. TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
  277. 20 CONTINUE
  278. ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
  279. 30 CONTINUE
  280. *
  281. * Compute RESULT(2) : the normalization error in E.
  282. *
  283. RESULT( 2 ) = ENRMER / ( DBLE( N )*ULP )
  284. *
  285. RETURN
  286. *
  287. * End of ZGET52
  288. *
  289. END