You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cget52.f 8.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. *> \brief \b CGET52
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
  12. * WORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL LEFT
  16. * INTEGER LDA, LDB, LDE, N
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL RESULT( 2 ), RWORK( * )
  20. * COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
  21. * $ BETA( * ), E( LDE, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CGET52 does an eigenvector check for the generalized eigenvalue
  31. *> problem.
  32. *>
  33. *> The basic test for right eigenvectors is:
  34. *>
  35. *> | b(i) A E(i) - a(i) B E(i) |
  36. *> RESULT(1) = max -------------------------------
  37. *> i n ulp max( |b(i) A|, |a(i) B| )
  38. *>
  39. *> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized
  40. *> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
  41. *> generalized eigenvalue of m A - B.
  42. *>
  43. *> H H _ _
  44. *> For left eigenvectors, A , B , a, and b are used.
  45. *>
  46. *> CGET52 also tests the normalization of E. Each eigenvector is
  47. *> supposed to be normalized so that the maximum "absolute value"
  48. *> of its elements is 1, where in this case, "absolute value"
  49. *> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
  50. *> maximum "absolute value" norm of a vector v M(v).
  51. *> if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
  52. *> vector. The normalization test is:
  53. *>
  54. *> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp )
  55. *> eigenvectors v(i)
  56. *> \endverbatim
  57. *
  58. * Arguments:
  59. * ==========
  60. *
  61. *> \param[in] LEFT
  62. *> \verbatim
  63. *> LEFT is LOGICAL
  64. *> =.TRUE.: The eigenvectors in the columns of E are assumed
  65. *> to be *left* eigenvectors.
  66. *> =.FALSE.: The eigenvectors in the columns of E are assumed
  67. *> to be *right* eigenvectors.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The size of the matrices. If it is zero, CGET52 does
  74. *> nothing. It must be at least zero.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] A
  78. *> \verbatim
  79. *> A is COMPLEX array, dimension (LDA, N)
  80. *> The matrix A.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of A. It must be at least 1
  87. *> and at least N.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] B
  91. *> \verbatim
  92. *> B is COMPLEX array, dimension (LDB, N)
  93. *> The matrix B.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDB
  97. *> \verbatim
  98. *> LDB is INTEGER
  99. *> The leading dimension of B. It must be at least 1
  100. *> and at least N.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] E
  104. *> \verbatim
  105. *> E is COMPLEX array, dimension (LDE, N)
  106. *> The matrix of eigenvectors. It must be O( 1 ).
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDE
  110. *> \verbatim
  111. *> LDE is INTEGER
  112. *> The leading dimension of E. It must be at least 1 and at
  113. *> least N.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] ALPHA
  117. *> \verbatim
  118. *> ALPHA is COMPLEX array, dimension (N)
  119. *> The values a(i) as described above, which, along with b(i),
  120. *> define the generalized eigenvalues.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] BETA
  124. *> \verbatim
  125. *> BETA is COMPLEX array, dimension (N)
  126. *> The values b(i) as described above, which, along with a(i),
  127. *> define the generalized eigenvalues.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is COMPLEX array, dimension (N**2)
  133. *> \endverbatim
  134. *>
  135. *> \param[out] RWORK
  136. *> \verbatim
  137. *> RWORK is REAL array, dimension (N)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] RESULT
  141. *> \verbatim
  142. *> RESULT is REAL array, dimension (2)
  143. *> The values computed by the test described above. If A E or
  144. *> B E is likely to overflow, then RESULT(1:2) is set to
  145. *> 10 / ulp.
  146. *> \endverbatim
  147. *
  148. * Authors:
  149. * ========
  150. *
  151. *> \author Univ. of Tennessee
  152. *> \author Univ. of California Berkeley
  153. *> \author Univ. of Colorado Denver
  154. *> \author NAG Ltd.
  155. *
  156. *> \ingroup complex_eig
  157. *
  158. * =====================================================================
  159. SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
  160. $ WORK, RWORK, RESULT )
  161. *
  162. * -- LAPACK test routine --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. *
  166. * .. Scalar Arguments ..
  167. LOGICAL LEFT
  168. INTEGER LDA, LDB, LDE, N
  169. * ..
  170. * .. Array Arguments ..
  171. REAL RESULT( 2 ), RWORK( * )
  172. COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
  173. $ BETA( * ), E( LDE, * ), WORK( * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. REAL ZERO, ONE
  180. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  181. COMPLEX CZERO, CONE
  182. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  183. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  184. * ..
  185. * .. Local Scalars ..
  186. CHARACTER NORMAB, TRANS
  187. INTEGER J, JVEC
  188. REAL ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
  189. $ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
  190. $ ULP
  191. COMPLEX ACOEFF, ALPHAI, BCOEFF, BETAI, X
  192. * ..
  193. * .. External Functions ..
  194. REAL CLANGE, SLAMCH
  195. EXTERNAL CLANGE, SLAMCH
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL CGEMV
  199. * ..
  200. * .. Intrinsic Functions ..
  201. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL
  202. * ..
  203. * .. Statement Functions ..
  204. REAL ABS1
  205. * ..
  206. * .. Statement Function definitions ..
  207. ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. RESULT( 1 ) = ZERO
  212. RESULT( 2 ) = ZERO
  213. IF( N.LE.0 )
  214. $ RETURN
  215. *
  216. SAFMIN = SLAMCH( 'Safe minimum' )
  217. SAFMAX = ONE / SAFMIN
  218. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  219. *
  220. IF( LEFT ) THEN
  221. TRANS = 'C'
  222. NORMAB = 'I'
  223. ELSE
  224. TRANS = 'N'
  225. NORMAB = 'O'
  226. END IF
  227. *
  228. * Norm of A, B, and E:
  229. *
  230. ANORM = MAX( CLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
  231. BNORM = MAX( CLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
  232. ENORM = MAX( CLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
  233. ALFMAX = SAFMAX / MAX( ONE, BNORM )
  234. BETMAX = SAFMAX / MAX( ONE, ANORM )
  235. *
  236. * Compute error matrix.
  237. * Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| )
  238. *
  239. DO 10 JVEC = 1, N
  240. ALPHAI = ALPHA( JVEC )
  241. BETAI = BETA( JVEC )
  242. ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
  243. IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
  244. $ ABMAX.LT.ONE ) THEN
  245. SCALE = ONE / MAX( ABMAX, SAFMIN )
  246. ALPHAI = SCALE*ALPHAI
  247. BETAI = SCALE*BETAI
  248. END IF
  249. SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
  250. $ SAFMIN )
  251. ACOEFF = SCALE*BETAI
  252. BCOEFF = SCALE*ALPHAI
  253. IF( LEFT ) THEN
  254. ACOEFF = CONJG( ACOEFF )
  255. BCOEFF = CONJG( BCOEFF )
  256. END IF
  257. CALL CGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
  258. $ CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
  259. CALL CGEMV( TRANS, N, N, -BCOEFF, B, LDB, E( 1, JVEC ), 1,
  260. $ CONE, WORK( N*( JVEC-1 )+1 ), 1 )
  261. 10 CONTINUE
  262. *
  263. ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
  264. *
  265. * Compute RESULT(1)
  266. *
  267. RESULT( 1 ) = ERRNRM / ULP
  268. *
  269. * Normalization of E:
  270. *
  271. ENRMER = ZERO
  272. DO 30 JVEC = 1, N
  273. TEMP1 = ZERO
  274. DO 20 J = 1, N
  275. TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
  276. 20 CONTINUE
  277. ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
  278. 30 CONTINUE
  279. *
  280. * Compute RESULT(2) : the normalization error in E.
  281. *
  282. RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
  283. *
  284. RETURN
  285. *
  286. * End of CGET52
  287. *
  288. END