You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptri.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. *> \brief \b ZSPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSPTRI computes the inverse of a complex symmetric indefinite matrix
  39. *> A in packed storage using the factorization A = U*D*U**T or
  40. *> A = L*D*L**T computed by ZSPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] AP
  62. *> \verbatim
  63. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZSPTRF,
  66. *> stored as a packed triangular matrix.
  67. *>
  68. *> On exit, if INFO = 0, the (symmetric) inverse of the original
  69. *> matrix, stored as a packed triangular matrix. The j-th column
  70. *> of inv(A) is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L',
  73. *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by ZSPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is COMPLEX*16 array, dimension (N)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  94. *> inverse could not be computed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup complex16OTHERcomputational
  106. *
  107. * =====================================================================
  108. SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  109. *
  110. * -- LAPACK computational routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER UPLO
  116. INTEGER INFO, N
  117. * ..
  118. * .. Array Arguments ..
  119. INTEGER IPIV( * )
  120. COMPLEX*16 AP( * ), WORK( * )
  121. * ..
  122. *
  123. * =====================================================================
  124. *
  125. * .. Parameters ..
  126. COMPLEX*16 ONE, ZERO
  127. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  128. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  129. * ..
  130. * .. Local Scalars ..
  131. LOGICAL UPPER
  132. INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  133. COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
  134. * ..
  135. * .. External Functions ..
  136. LOGICAL LSAME
  137. COMPLEX*16 ZDOTU
  138. EXTERNAL LSAME, ZDOTU
  139. * ..
  140. * .. External Subroutines ..
  141. EXTERNAL XERBLA, ZCOPY, ZSPMV, ZSWAP
  142. * ..
  143. * .. Intrinsic Functions ..
  144. INTRINSIC ABS
  145. * ..
  146. * .. Executable Statements ..
  147. *
  148. * Test the input parameters.
  149. *
  150. INFO = 0
  151. UPPER = LSAME( UPLO, 'U' )
  152. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  153. INFO = -1
  154. ELSE IF( N.LT.0 ) THEN
  155. INFO = -2
  156. END IF
  157. IF( INFO.NE.0 ) THEN
  158. CALL XERBLA( 'ZSPTRI', -INFO )
  159. RETURN
  160. END IF
  161. *
  162. * Quick return if possible
  163. *
  164. IF( N.EQ.0 )
  165. $ RETURN
  166. *
  167. * Check that the diagonal matrix D is nonsingular.
  168. *
  169. IF( UPPER ) THEN
  170. *
  171. * Upper triangular storage: examine D from bottom to top
  172. *
  173. KP = N*( N+1 ) / 2
  174. DO 10 INFO = N, 1, -1
  175. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  176. $ RETURN
  177. KP = KP - INFO
  178. 10 CONTINUE
  179. ELSE
  180. *
  181. * Lower triangular storage: examine D from top to bottom.
  182. *
  183. KP = 1
  184. DO 20 INFO = 1, N
  185. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  186. $ RETURN
  187. KP = KP + N - INFO + 1
  188. 20 CONTINUE
  189. END IF
  190. INFO = 0
  191. *
  192. IF( UPPER ) THEN
  193. *
  194. * Compute inv(A) from the factorization A = U*D*U**T.
  195. *
  196. * K is the main loop index, increasing from 1 to N in steps of
  197. * 1 or 2, depending on the size of the diagonal blocks.
  198. *
  199. K = 1
  200. KC = 1
  201. 30 CONTINUE
  202. *
  203. * If K > N, exit from loop.
  204. *
  205. IF( K.GT.N )
  206. $ GO TO 50
  207. *
  208. KCNEXT = KC + K
  209. IF( IPIV( K ).GT.0 ) THEN
  210. *
  211. * 1 x 1 diagonal block
  212. *
  213. * Invert the diagonal block.
  214. *
  215. AP( KC+K-1 ) = ONE / AP( KC+K-1 )
  216. *
  217. * Compute column K of the inverse.
  218. *
  219. IF( K.GT.1 ) THEN
  220. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  221. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  222. $ 1 )
  223. AP( KC+K-1 ) = AP( KC+K-1 ) -
  224. $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  225. END IF
  226. KSTEP = 1
  227. ELSE
  228. *
  229. * 2 x 2 diagonal block
  230. *
  231. * Invert the diagonal block.
  232. *
  233. T = AP( KCNEXT+K-1 )
  234. AK = AP( KC+K-1 ) / T
  235. AKP1 = AP( KCNEXT+K ) / T
  236. AKKP1 = AP( KCNEXT+K-1 ) / T
  237. D = T*( AK*AKP1-ONE )
  238. AP( KC+K-1 ) = AKP1 / D
  239. AP( KCNEXT+K ) = AK / D
  240. AP( KCNEXT+K-1 ) = -AKKP1 / D
  241. *
  242. * Compute columns K and K+1 of the inverse.
  243. *
  244. IF( K.GT.1 ) THEN
  245. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  246. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  247. $ 1 )
  248. AP( KC+K-1 ) = AP( KC+K-1 ) -
  249. $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  250. AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  251. $ ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
  252. $ 1 )
  253. CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  254. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
  255. $ AP( KCNEXT ), 1 )
  256. AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  257. $ ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
  258. END IF
  259. KSTEP = 2
  260. KCNEXT = KCNEXT + K + 1
  261. END IF
  262. *
  263. KP = ABS( IPIV( K ) )
  264. IF( KP.NE.K ) THEN
  265. *
  266. * Interchange rows and columns K and KP in the leading
  267. * submatrix A(1:k+1,1:k+1)
  268. *
  269. KPC = ( KP-1 )*KP / 2 + 1
  270. CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  271. KX = KPC + KP - 1
  272. DO 40 J = KP + 1, K - 1
  273. KX = KX + J - 1
  274. TEMP = AP( KC+J-1 )
  275. AP( KC+J-1 ) = AP( KX )
  276. AP( KX ) = TEMP
  277. 40 CONTINUE
  278. TEMP = AP( KC+K-1 )
  279. AP( KC+K-1 ) = AP( KPC+KP-1 )
  280. AP( KPC+KP-1 ) = TEMP
  281. IF( KSTEP.EQ.2 ) THEN
  282. TEMP = AP( KC+K+K-1 )
  283. AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  284. AP( KC+K+KP-1 ) = TEMP
  285. END IF
  286. END IF
  287. *
  288. K = K + KSTEP
  289. KC = KCNEXT
  290. GO TO 30
  291. 50 CONTINUE
  292. *
  293. ELSE
  294. *
  295. * Compute inv(A) from the factorization A = L*D*L**T.
  296. *
  297. * K is the main loop index, increasing from 1 to N in steps of
  298. * 1 or 2, depending on the size of the diagonal blocks.
  299. *
  300. NPP = N*( N+1 ) / 2
  301. K = N
  302. KC = NPP
  303. 60 CONTINUE
  304. *
  305. * If K < 1, exit from loop.
  306. *
  307. IF( K.LT.1 )
  308. $ GO TO 80
  309. *
  310. KCNEXT = KC - ( N-K+2 )
  311. IF( IPIV( K ).GT.0 ) THEN
  312. *
  313. * 1 x 1 diagonal block
  314. *
  315. * Invert the diagonal block.
  316. *
  317. AP( KC ) = ONE / AP( KC )
  318. *
  319. * Compute column K of the inverse.
  320. *
  321. IF( K.LT.N ) THEN
  322. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  323. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
  324. $ ZERO, AP( KC+1 ), 1 )
  325. AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  326. $ 1 )
  327. END IF
  328. KSTEP = 1
  329. ELSE
  330. *
  331. * 2 x 2 diagonal block
  332. *
  333. * Invert the diagonal block.
  334. *
  335. T = AP( KCNEXT+1 )
  336. AK = AP( KCNEXT ) / T
  337. AKP1 = AP( KC ) / T
  338. AKKP1 = AP( KCNEXT+1 ) / T
  339. D = T*( AK*AKP1-ONE )
  340. AP( KCNEXT ) = AKP1 / D
  341. AP( KC ) = AK / D
  342. AP( KCNEXT+1 ) = -AKKP1 / D
  343. *
  344. * Compute columns K-1 and K of the inverse.
  345. *
  346. IF( K.LT.N ) THEN
  347. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  348. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  349. $ ZERO, AP( KC+1 ), 1 )
  350. AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  351. $ 1 )
  352. AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  353. $ ZDOTU( N-K, AP( KC+1 ), 1,
  354. $ AP( KCNEXT+2 ), 1 )
  355. CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  356. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  357. $ ZERO, AP( KCNEXT+2 ), 1 )
  358. AP( KCNEXT ) = AP( KCNEXT ) -
  359. $ ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
  360. END IF
  361. KSTEP = 2
  362. KCNEXT = KCNEXT - ( N-K+3 )
  363. END IF
  364. *
  365. KP = ABS( IPIV( K ) )
  366. IF( KP.NE.K ) THEN
  367. *
  368. * Interchange rows and columns K and KP in the trailing
  369. * submatrix A(k-1:n,k-1:n)
  370. *
  371. KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  372. IF( KP.LT.N )
  373. $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  374. KX = KC + KP - K
  375. DO 70 J = K + 1, KP - 1
  376. KX = KX + N - J + 1
  377. TEMP = AP( KC+J-K )
  378. AP( KC+J-K ) = AP( KX )
  379. AP( KX ) = TEMP
  380. 70 CONTINUE
  381. TEMP = AP( KC )
  382. AP( KC ) = AP( KPC )
  383. AP( KPC ) = TEMP
  384. IF( KSTEP.EQ.2 ) THEN
  385. TEMP = AP( KC-N+K-1 )
  386. AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  387. AP( KC-N+KP-1 ) = TEMP
  388. END IF
  389. END IF
  390. *
  391. K = K - KSTEP
  392. KC = KCNEXT
  393. GO TO 60
  394. 80 CONTINUE
  395. END IF
  396. *
  397. RETURN
  398. *
  399. * End of ZSPTRI
  400. *
  401. END