You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhpgst.f 8.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. *> \brief \b ZHPGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 AP( * ), BP( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZHPGST reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form, using packed storage.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
  45. *>
  46. *> B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H*A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> = 'U': Upper triangle of A is stored and B is factored as
  63. *> U**H*U;
  64. *> = 'L': Lower triangle of A is stored and B is factored as
  65. *> L*L**H.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] AP
  75. *> \verbatim
  76. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  77. *> On entry, the upper or lower triangle of the Hermitian matrix
  78. *> A, packed columnwise in a linear array. The j-th column of A
  79. *> is stored in the array AP as follows:
  80. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  81. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  82. *>
  83. *> On exit, if INFO = 0, the transformed matrix, stored in the
  84. *> same format as A.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] BP
  88. *> \verbatim
  89. *> BP is COMPLEX*16 array, dimension (N*(N+1)/2)
  90. *> The triangular factor from the Cholesky factorization of B,
  91. *> stored in the same format as A, as returned by ZPPTRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] INFO
  95. *> \verbatim
  96. *> INFO is INTEGER
  97. *> = 0: successful exit
  98. *> < 0: if INFO = -i, the i-th argument had an illegal value
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \ingroup complex16OTHERcomputational
  110. *
  111. * =====================================================================
  112. SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  113. *
  114. * -- LAPACK computational routine --
  115. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  116. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117. *
  118. * .. Scalar Arguments ..
  119. CHARACTER UPLO
  120. INTEGER INFO, ITYPE, N
  121. * ..
  122. * .. Array Arguments ..
  123. COMPLEX*16 AP( * ), BP( * )
  124. * ..
  125. *
  126. * =====================================================================
  127. *
  128. * .. Parameters ..
  129. DOUBLE PRECISION ONE, HALF
  130. PARAMETER ( ONE = 1.0D+0, HALF = 0.5D+0 )
  131. COMPLEX*16 CONE
  132. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  133. * ..
  134. * .. Local Scalars ..
  135. LOGICAL UPPER
  136. INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
  137. DOUBLE PRECISION AJJ, AKK, BJJ, BKK
  138. COMPLEX*16 CT
  139. * ..
  140. * .. External Subroutines ..
  141. EXTERNAL XERBLA, ZAXPY, ZDSCAL, ZHPMV, ZHPR2, ZTPMV,
  142. $ ZTPSV
  143. * ..
  144. * .. Intrinsic Functions ..
  145. INTRINSIC DBLE
  146. * ..
  147. * .. External Functions ..
  148. LOGICAL LSAME
  149. COMPLEX*16 ZDOTC
  150. EXTERNAL LSAME, ZDOTC
  151. * ..
  152. * .. Executable Statements ..
  153. *
  154. * Test the input parameters.
  155. *
  156. INFO = 0
  157. UPPER = LSAME( UPLO, 'U' )
  158. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  159. INFO = -1
  160. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  161. INFO = -2
  162. ELSE IF( N.LT.0 ) THEN
  163. INFO = -3
  164. END IF
  165. IF( INFO.NE.0 ) THEN
  166. CALL XERBLA( 'ZHPGST', -INFO )
  167. RETURN
  168. END IF
  169. *
  170. IF( ITYPE.EQ.1 ) THEN
  171. IF( UPPER ) THEN
  172. *
  173. * Compute inv(U**H)*A*inv(U)
  174. *
  175. * J1 and JJ are the indices of A(1,j) and A(j,j)
  176. *
  177. JJ = 0
  178. DO 10 J = 1, N
  179. J1 = JJ + 1
  180. JJ = JJ + J
  181. *
  182. * Compute the j-th column of the upper triangle of A
  183. *
  184. AP( JJ ) = DBLE( AP( JJ ) )
  185. BJJ = DBLE( BP( JJ ) )
  186. CALL ZTPSV( UPLO, 'Conjugate transpose', 'Non-unit', J,
  187. $ BP, AP( J1 ), 1 )
  188. CALL ZHPMV( UPLO, J-1, -CONE, AP, BP( J1 ), 1, CONE,
  189. $ AP( J1 ), 1 )
  190. CALL ZDSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  191. AP( JJ ) = ( AP( JJ )-ZDOTC( J-1, AP( J1 ), 1, BP( J1 ),
  192. $ 1 ) ) / BJJ
  193. 10 CONTINUE
  194. ELSE
  195. *
  196. * Compute inv(L)*A*inv(L**H)
  197. *
  198. * KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  199. *
  200. KK = 1
  201. DO 20 K = 1, N
  202. K1K1 = KK + N - K + 1
  203. *
  204. * Update the lower triangle of A(k:n,k:n)
  205. *
  206. AKK = DBLE( AP( KK ) )
  207. BKK = DBLE( BP( KK ) )
  208. AKK = AKK / BKK**2
  209. AP( KK ) = AKK
  210. IF( K.LT.N ) THEN
  211. CALL ZDSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  212. CT = -HALF*AKK
  213. CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  214. CALL ZHPR2( UPLO, N-K, -CONE, AP( KK+1 ), 1,
  215. $ BP( KK+1 ), 1, AP( K1K1 ) )
  216. CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  217. CALL ZTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  218. $ BP( K1K1 ), AP( KK+1 ), 1 )
  219. END IF
  220. KK = K1K1
  221. 20 CONTINUE
  222. END IF
  223. ELSE
  224. IF( UPPER ) THEN
  225. *
  226. * Compute U*A*U**H
  227. *
  228. * K1 and KK are the indices of A(1,k) and A(k,k)
  229. *
  230. KK = 0
  231. DO 30 K = 1, N
  232. K1 = KK + 1
  233. KK = KK + K
  234. *
  235. * Update the upper triangle of A(1:k,1:k)
  236. *
  237. AKK = DBLE( AP( KK ) )
  238. BKK = DBLE( BP( KK ) )
  239. CALL ZTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  240. $ AP( K1 ), 1 )
  241. CT = HALF*AKK
  242. CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  243. CALL ZHPR2( UPLO, K-1, CONE, AP( K1 ), 1, BP( K1 ), 1,
  244. $ AP )
  245. CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  246. CALL ZDSCAL( K-1, BKK, AP( K1 ), 1 )
  247. AP( KK ) = AKK*BKK**2
  248. 30 CONTINUE
  249. ELSE
  250. *
  251. * Compute L**H *A*L
  252. *
  253. * JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  254. *
  255. JJ = 1
  256. DO 40 J = 1, N
  257. J1J1 = JJ + N - J + 1
  258. *
  259. * Compute the j-th column of the lower triangle of A
  260. *
  261. AJJ = DBLE( AP( JJ ) )
  262. BJJ = DBLE( BP( JJ ) )
  263. AP( JJ ) = AJJ*BJJ + ZDOTC( N-J, AP( JJ+1 ), 1,
  264. $ BP( JJ+1 ), 1 )
  265. CALL ZDSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  266. CALL ZHPMV( UPLO, N-J, CONE, AP( J1J1 ), BP( JJ+1 ), 1,
  267. $ CONE, AP( JJ+1 ), 1 )
  268. CALL ZTPMV( UPLO, 'Conjugate transpose', 'Non-unit',
  269. $ N-J+1, BP( JJ ), AP( JJ ), 1 )
  270. JJ = J1J1
  271. 40 CONTINUE
  272. END IF
  273. END IF
  274. RETURN
  275. *
  276. * End of ZHPGST
  277. *
  278. END